Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6:ĐKXĐ: x>=0; x<>1/25
BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)
=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)
=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)
7:
ĐKXĐ: x>=0
BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)
=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)
=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)
=>\(-\sqrt{x}-2>=0\)(vô lý)
8:
ĐKXĐ: x>=0; x<>9/4
BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)
=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)
=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)
TH1: 9căn x-14>0 và 2căn x-3<0
=>căn x>14/9 và căn x<3/2
=>14/9<căn x<3/2
=>196/81<x<9/4
TH2: 9căn x-14<0 và 2căn x-3>0
=>căn x>3/2 hoặc căn x<14/9
mà 3/2<14/9
nên trường hợp này Loại
9:
ĐKXĐ: x>=0
\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)
=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)
=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)
=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)
10:
ĐKXĐ: x>=0; x<>1/49
\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)
=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)
=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)
=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)
TH1: 6căn x-1>0 và 7căn x-1>0
=>căn x>1/6 và căn x>1/7
=>căn x>1/6
=>x>1/36
TH2: 6căn x-1<0 và 7căn x-1<0
=>căn x<1/6 và căn x<1/7
=>căn x<1/7
=>0<=x<1/49
6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)
Phương trình sẽ trở thành là: a^2+a-42=0
=>(a+7)(a-6)=0
=>a=-7(loại) hoặc a=6(nhận)
=>2x^2+3x+9=36
=>2x^2+3x-27=0
=>2x^2+9x-6x-27=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
a)ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Ta có: \(D=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)
\(=\dfrac{x-4\sqrt{x}+4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-5\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
a) đkxđ \(x\ge-1\)
pt đã cho tương đương với
\(x^2-x=2\left(\sqrt{x+1}-\sqrt{x^3+1}\right)\)
\(\Leftrightarrow x^2-x=2.\dfrac{x+1-\left(x^3+1\right)}{\sqrt{x+1}+\sqrt{x^3+1}}\)
\(\Leftrightarrow x\left(x-1\right)=2.\dfrac{x\left(1-x\right)}{\sqrt{x+1}+\sqrt{x^3+1}}\)
\(\Leftrightarrow x\left(x-1\right)\left[1+\dfrac{1}{\sqrt{x+1}+\sqrt{x^3+1}}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=1\left(nhận\right)\\1+\dfrac{1}{\sqrt{x+1}+\sqrt{x^3+1}}=0\left(vôlí\right)\end{matrix}\right.\)
Vậy pt đã cho có tâp nghiệm \(S=\left\{0;-1\right\}\)
\(x^2-x+2\sqrt[]{x^3+1}=2\sqrt[]{x+1}\)
\(\Leftrightarrow2\sqrt[]{x^3+1}-2\sqrt[]{x+1}-\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{4}=0\)
\(\Leftrightarrow2\sqrt[]{x+1}\left(\sqrt[]{x^2-x+1}-1\right)-\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=2\sqrt[]{x+1}\left(\sqrt[]{x^2-x+1}-1\right)-\dfrac{1}{4}\left(1\right)\)
mà \(\left(x+\dfrac{1}{2}\right)^2\ge0,\forall x\inℝ\)
\(\left(1\right)\Leftrightarrow2\sqrt[]{x+1}\left(\sqrt[]{x^2-x+1}-1\right)-\dfrac{1}{4}\ge0\)
\(\Leftrightarrow\sqrt[]{x+1}\left(\sqrt[]{x^2-x+1}-1\right)\ge\dfrac{1}{8}\left(2\right)\)
Điều kiện xác định :
\(\left\{{}\begin{matrix}x+1\ge0\\\sqrt[]{x^2-x+1}-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\sqrt[]{x^2-x+1}\ge1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-x+1\ge1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\left(x-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\le0\cup x\ge1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\-1\le x\le0\end{matrix}\right.\)
BPT \(\left(2\right)\Leftrightarrow\left(x+1\right)\left(x^2-x+1-2\sqrt[]{x^2-x+1}-1\right)\ge\dfrac{1}{64}\)
\(\Leftrightarrow\left(x^2-x-2\sqrt[]{x^2-x+1}\right)\ge\dfrac{1}{64}\left(vì.x+1\ge0\right)\)
Đặt \(t=\sqrt[]{x^2-x+1}>0\)
\(BPT\Leftrightarrow t^2-2t-1-\dfrac{1}{64}\ge0\)
\(\Leftrightarrow t^2-2t-\dfrac{63}{64}\ge0\)
\(\Leftrightarrow t^2-2t+1-1-\dfrac{63}{64}\ge0\)
\(\Leftrightarrow\left(t-1\right)^2-\dfrac{127}{64}\ge0\)
\(\Leftrightarrow\left(t-1-\dfrac{\sqrt[]{127}}{8}\right)\left(t-1+\dfrac{\sqrt[]{127}}{8}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}t\ge1+\dfrac{\sqrt[]{127}}{8}\\t\le1-\dfrac{\sqrt[]{127}}{8}\end{matrix}\right.\)
\(\Leftrightarrow t\ge1+\dfrac{\sqrt[]{127}}{8}\) \(\left(t>0;1-\dfrac{\sqrt[]{127}}{8}< 0\right)\)
\(\Leftrightarrow\sqrt[]{x^2-x+1}\ge1+\dfrac{\sqrt[]{127}}{8}\)
\(\Leftrightarrow x^2-x+1\ge\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2\)
mà \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4},\forall x\)
\(\dfrac{3}{4}< \left(1+\dfrac{\sqrt[]{127}}{8}\right)^2\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\ge\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\ge\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}\le-\sqrt[]{\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}}\\x-\dfrac{1}{2}\ge\sqrt[]{\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le-\sqrt[]{\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}}+\dfrac{1}{2}\\x\ge\sqrt[]{\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}}+\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\ge\sqrt[]{\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}}+\dfrac{1}{2}\) (so với đkxđ \(\left[{}\begin{matrix}x\ge1\\-1\le x\le0\end{matrix}\right.\))
\(\Leftrightarrow x=\sqrt[]{\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}}+\dfrac{1}{2}\)