![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(x^2+x-2=0\)
\(\Leftrightarrow x^2+2x-x-2=0\)
\(\Leftrightarrow x\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
2) \(x^2+2x-3=0\)
\(\Leftrightarrow x^2+3x-x-3=0\)
\(\Leftrightarrow x\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)
3) \(x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
4) \(x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
5) \(2x^2-x-6=0\)
\(\Leftrightarrow2x^2-4x+3x-6=0\)
\(\Leftrightarrow2x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{3}{2}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)⇔x2+1x-3x+3=0
⇔x(x+1)-3(x+1)=0
⇔(x+1)(x-3)=0
⇔x+1=0 hoặc x-3=0
⇔x=-1 hoặc x=3
4)⇔x(1+5x)=0
⇔x=0 hoặc 1+5x=0
⇔x=0 hoặc 5x=-1
⇔x=0 hoặc x=-0.2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^3-5x^2+8x-4=0\)
\(\Leftrightarrow x^3-x^2-4x^2+4x+4x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy nghiệm của phương trình là: \(x=\left\{1;2\right\}\)
b: =>2x^3+2x^2-3x^2-3x+6x+6=0
=>(x+1)(2x^2-3x+6)=0
=>x+1=0
=>x=-1
c: =>(x^2+x)^2+(x^2+x)-6=0
=>(x^2+x-2)=0
=>(x+2)(x-1)=0
=>x=1 hoặc x=-2
d: =>(x^2-4x-3)(x^2-4x-5)=0
=>(x-5)(x+1)(x^2-4x-3)=0
hay \(x\in\left\{2+\sqrt{7};2-\sqrt{7};5;-1\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{a) (5x+2)(x-7)=0}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)
Vậy ...
#Thảo Vy#
![](https://rs.olm.vn/images/avt/0.png?1311)
b, ( x2 + x ) ( x2 + x + 1 )=6
=> ( x2 + x ) ( x2 + x + 1) - 6 = 0
=> ( x - 1 ) ( x + 2 ) ( x2 + x +3 ) = 0
=> x - 1= 0 => x= 1
=> x + 2 = 0 => x = -2
=> x2 + x + 3 = 0 => 12 - 4 ( 1.3 ) = -11 ( vô lí )
Vậy x = 1; x= -2
a) \(2x^3-x^2+3x+6=0\)
\(\left(2x^3-x^2\right)+\left(3x+6\right)=0\)
\(x^2\left(2-x\right)-3\left(2-x\right)=0\)
\(\left(x^2-3\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-3=0\\2-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)\(\)
vậy \(\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
3) \(x^2-7x+6=0\)
\(\Leftrightarrow x^2-6x-x+6=0\)
\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
S=\(\left\{6;1\right\}\)
\(\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2x^2-6x=0\)
\(\Rightarrow2x.\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0:2\\x=0+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{0;3\right\}.\)
\(2x.\left(x+2\right)-3.\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right).\left(2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0-2\\2x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3:2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-2;\frac{3}{2}\right\}.\)
\(x^3-16x=0\)
\(\Rightarrow x.\left(x^2-16\right)=0\)
\(\Rightarrow x.\left(x^2-4^2\right)=0\)
\(\Rightarrow x.\left(x-4\right).\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-4=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=0+4\\x=0-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
Vậy \(x\in\left\{0;4;-4\right\}.\)
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 2 sai đề nhé
Phải là:(x-999)/99+(x-896)/101+(x-789/103)=6
![](https://rs.olm.vn/images/avt/0.png?1311)
1) -3x2+5x=0
-x(3x-5)=0
suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5
2) x2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x-2)(x+3)=0
suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3
3) x2+6x-x-6=0
x(x+6)-(x+6)=0
(x-1)(x+6)=0. vậy nghiệm là 1 và -6
4) x2+2x-3x-6=0
x(x+2)-3(x+2)=0
(x-3)(x+2)=0
vậy nghiệm là -2 và 3
5) x(x-6)-4(x-6)=0
(x-4)(x-6)=0. vậy nghiệm là 4 và 6
6)x(x-8)-3(x-8)=0
(x-3)(x-8)=0
suy ra nghiệm là 3 và 8
7) x2-5x-24=0
x2-8x+3x-24=0
x(x-8)+3(x-8)=0
(x+3)(x-8)=0
vậy nghiệm là -3 và 8
câu 1: -3x2 + 5x = 0
suy ra -x(3x-5)=0
sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1
a)\(x^2+5x+6=\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}}\)
\(\left(x^2+x\right)^2+\left(x^2+x\right)-6=0\)
\(\Rightarrow\left(x^2+x\right)^2+3\left(x^2+x\right)-2\left(x^2+x\right)-6=0\)
\(\Rightarrow\left(x^2+x\right)\left(x^2+x+3\right)-2\left(x^2+x+3\right)=0\)
\(\Rightarrow\left(x^2+x+3\right)\left(x^2+x-2\right)=0\)
Mà \(x^2+x+3=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}>0\forall x\)
\(\Rightarrow x^2+x-2=0\)
\(\Rightarrow x\left(x+2\right)-\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)