Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
a)A=4(x+11/8)^2 -153/16
Min A=-153/16 khi x=-11/8
b)B=3(x-1/3)^2 -4/3
Min B=-4/3 khi x=1/3
Bài 1:
a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)
\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)
b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)
Bài 2:
a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)
b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)
\(maxB=11\Leftrightarrow x=-2\)
\(x+y=1\Rightarrow y=1-x\)
\(P=x^3+\left(1-x\right)^3+x\left(1-x\right)\)
\(P=2x^2-2x+1=\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
\(P_{min}=\dfrac{1}{2}\) khi \(x=y=\dfrac{1}{2}\)
\(\Rightarrow x^3+3x^2+3x+1=0\\ \Rightarrow\left(x+1\right)^3=0\Rightarrow x+1=0\Rightarrow x=-1\)
Kiểm tra giúp mình yêu cầu thứ nhất nhé!
Có thể bạn tìm:
"Đề: Tìm m để phương trình (m2-1)x+2=m-1 nhận x=2 là nghiệm.
Giải: Thế x=2 vào phương trình đã cho, ta suy ra (m2-1).2+2=m-1 (vô nghiệm).
Không có giá trị nào của m để phương trình đã cho nhận x=2 là nghiệm. -Hết-".
Thế x=-1 vào phương trình đã cho, ta suy ra 3.(-1)2+4m.(-1)=8 \(\Rightarrow\) m=-5/4.
Bạn xem giúp mình yêu cầu cuối cùng nha!
Có thể bạn tìm:
"Đề: Tìm m để phương trình (2m+3)x-5=(m+2)-x có nghiệm là x=3.
Giải: Thế x=3 vào phương trình đã cho, ta suy ra (2m+3).3-5=(m+2)-3 \(\Rightarrow\) m=-1. -Hết-".
Bài 1:
\(=\left(3x-1\right)^2-9y^2\)
=(3x-1-3y)(3x-1+3y)
=(3x−1)2−9y2=(3x−1)2−9y2
=(3x-1-3y)(3x-1+3y)
Tham khảo ạ
\(\frac{x^2-x+1}{x^2+x+1}=\frac{3x^2-3x+3}{3x^2+3x+3}=\frac{x^2+x+1+2x^2-4x+2}{3\left(x^2+x+1\right)}\)
\(=\frac{1}{3}+\frac{2x^2-4x+2}{3\left(x^2+x+1\right)}=\frac{1}{3}+\frac{2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}=\frac{1}{3}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\)
Vì \(\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge0\left(\forall x\right)\)
\(\Rightarrow\frac{1}{3}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\frac{1}{3}\)
Dấu "=" xảy ra <=> 2(x-1)2 = 0 <=> x-1 = 0 <=> x = 1
Vậy GTNN của biểu thức bằng 1/3 khi và chỉ khi x = 1
\(A=\frac{x^2-x+1}{x^2+x+1}\Leftrightarrow Ax^2+Ax+A=x^2-x+1\)
\(\Leftrightarrow x^2\left(A-1\right)+x\left(A+1\right)+\left(A-1\right)=0\) (1)
+) Xét A = 1 thì x = 0
+)Xét A khác 1 thì (1) có nghiệm tức là \(\Delta=\left(A+1\right)^2-4\left(A-1\right)^2\ge0\)
\(\Leftrightarrow\left(A^2+2A+1\right)-4\left(A^2-2A+1\right)\ge0\)
\(\Leftrightarrow-3A^2+10A-3\ge0\Leftrightarrow3A^2-10A+3\le0\)
\(\Leftrightarrow\frac{1}{3}\le A\le3\)
Vậy ...