Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhiều vậy ai làm hết được :P
1) \(\frac{3x-2}{3}-2=\frac{4x+1}{4}\)
\(\Leftrightarrow\frac{3x-8}{3}=\frac{4x-1}{4}\)
\(\Leftrightarrow4\left(3x-8\right)=3\left(4x-1\right)\)
\(\Leftrightarrow12x-32=12x-3\)(vô lí)
Vậy pt vô nghiệm
P/s: mấy câu sau tương tự thôi mà :)))
nhăm nhe 1 câu thôi
\(10,\frac{3+5x}{5}-3=\frac{9x-3}{4}\)
\(\Leftrightarrow\frac{3+5x-15}{5}=\frac{9x-3}{4}\)
\(\Leftrightarrow\frac{-12+5x}{5}=\frac{9x-3}{4}\)
\(\Leftrightarrow\left(-12+5x\right)5=\left(9x-3\right)4\)
\(\Leftrightarrow-60+25x=36x-12\)
\(\Leftrightarrow26x-36x=-12+60\)
\(\Leftrightarrow-10x=48\)
\(\Leftrightarrow x=-4,8\)
a) \(\left(x+8\right)\left(x+6\right)=104+x^2\Leftrightarrow x^2+6x+8x+48=104+x^2\)
\(\Leftrightarrow x^2+6x+8x-x^2=104-48\Leftrightarrow14x=56\Leftrightarrow x=\dfrac{56}{14}=4\)
vậy \(x=4\)
b) \(\left(x+1\right)\left(x+2\right)-\left(x-3\right)\left(x+4\right)=6\)
\(\Leftrightarrow x^2+2x+x+2-\left(x^2+4x-3x-12\right)=6\)
\(\Leftrightarrow x^2+2x+x+2-x^2-4x+3x+12=6\)
\(\Leftrightarrow2x+14=6\Leftrightarrow2x=6-14=-8\Leftrightarrow x=\dfrac{-8}{2}=-4\)
vậy \(x=-4\)
c) \(4x\left(x-5\right)-\left(x-1\right)\left(4x-3\right)=5\)
\(\Leftrightarrow4x^2-20x-\left(4x^2-3x-4x+3\right)=5\)
\(\Leftrightarrow4x^2-20x-4x^2+3x+4x-3=5\)
\(\Leftrightarrow-13x-3=5\Leftrightarrow-13x=5+3=8\Leftrightarrow x=\dfrac{8}{-13}=\dfrac{-8}{13}\)
vậy \(x=\dfrac{-8}{13}\)
d) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)
\(\Leftrightarrow3x^2-6x-4x+8=3x^2-27x-3\)
\(\Leftrightarrow3x^2-6x-4x-3x^2+27x=-3-8\)
\(\Leftrightarrow17x=-11\Leftrightarrow x=\dfrac{-11}{17}\) vậy \(x=\dfrac{-11}{17}\)
e) câu này đề bị thiếu rồi nha bn
f) \(5x\left(x-3\right)=\left(x-2\right)\left(5x-1\right)-5\)
\(\Leftrightarrow5x^2-15x=5x^2-x-10x+2-5\)
\(\Leftrightarrow5x^2-15x-5x^2+x+10x=2-5\)
\(\Leftrightarrow-4x=-3\Leftrightarrow x=\dfrac{-3}{-4}=\dfrac{3}{4}\) vậy \(x=\dfrac{3}{4}\)
a) \(\left(x+8\right)\left(x+6\right)=104+x^2\)
\(\Leftrightarrow x^2+14x+48=104+x^2\)
\(\Leftrightarrow14x=56\)
\(\Rightarrow x=4\)
b) \(\left(x+1\right)\left(x+2\right)-\left(x-3\right)\left(x+4\right)=6\)
\(\Leftrightarrow x^2+3x+2-x^2-7x+12=6\)
\(\Leftrightarrow-4x=-8\)
\(\Rightarrow x=2\)
c) \(4x\left(x-5\right)-\left(x-1\right)\left(4x-3\right)=5\)
\(\Leftrightarrow4x^2-20x-4x^2+3x+4x-3=5\)
\(\Leftrightarrow-13x=8\)
\(\Rightarrow x=\dfrac{-8}{13}\)
d) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)
\(\Leftrightarrow3x^2-10x+8=3x^2-27x-3\)
\(\Leftrightarrow17x=-11\)
\(\Rightarrow x=\dfrac{-11}{17}\)
e) \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)
\(\Leftrightarrow x^2-9x+20-x^2+x+2=7\)
\(\Leftrightarrow-8x=-15\)
\(\Rightarrow x=\dfrac{15}{8}\)
f) \(5x\left(x-3\right)=\left(x-2\right)\left(5x-1\right)-5\)
\(\Leftrightarrow5x^2-15x=5x^2-11x+2-5\)
\(\Leftrightarrow-4x=-3\)
\(\Rightarrow x=\dfrac{3}{4}\)
Ta có : x3 - 7x + 6
= x3 - x - 6x + 6
= x(x2 - 1) - 6(x - 1)
= x(x + 1)(x - 1) - 6(x - 1)
= (x - 1) [x(x + 1) - 6]
= (x - 1) (x2 + x - 6) .
CÁC Ý SAU TƯƠNG TỰ
1
x3-7x+6
=x3+0x2-7x +6
= x3-x2+x2-x-6x+6
=(x3-x2)+(x2-x)-(6x-6)
=x2(x-1)+x(x-1)-6(x-1)
=(x-1)(x2+x-6)
=(x-1)(x2+3x-2x-6)
=(x-1)[x(x+3)-2(x+3)]
=(x-1)(x-2)(x+3)
7) (x+2)(x+3)(x+4)(x+5)-24
=(x+2)(x+5) (x+3)(x+4)-24
=[x(x+5)+2(x+5)][x(x+4)+3(x+4)]-24
=[x2+5x+2x+10][x2+4x+3x+12]-24
=[x2+7x+10][x2+7x+12]-24
đặt a=x2+7x+10
=>x2+7x+12=a+2
=a(a+2)-24
=a2+2a-24
=a2+6a-4a-24
=(a2+6a)-(4a+24)
=a(a+6)-4(a+6)
=(a+6)(a-4)
thay a= x2+7x+10 vào ta được
(x2+7x+10+6)(x2+7x+10-4)
=(x2+7x+16)(x2+7x+6)
a) (x + 2)(x + 3) - (x - 2)(x + 5) = 0
<=> x2 + 3x + 2x + 6 - (x2 + 5x - 2x - 10) = 0
<=> x2 + 3x + 2x + 6 - x2 - 5x + 2x + 10 = 0
<=> 2x + 16 = 0
<=> 2x = -16
<=> x = -8
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
<=> (2x + 3)(x - 4) + (x - 5)(x - 2) - (3x - 5)(x - 4) = 0
<=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 - (3x2 - 12x - 5x + 20) = 0
<=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 - 3x2 + 12x + 5x - 20 = 0
<=> 5x = 12 - 10 + 20
<=> 5x = 22
<=> x = 22/5
c) (8 - 5x)(x + 2) + 4(x - 2)(x + 1) + 2(x - 2)(x + 2) = 0
<=> 8x + 16 - 5x2 - 10x + (4x - 8)(x + 1) + 2(x2 - 4) = 0
<=> 8x + 16 - 5x2 - 10x + 4x2 + 4x - 8x - 8 + 2x2 - 8 = 0
<=> x2 - 6x = 0
<=> x(x - 6) = 0
<=> x = 0 hay x - 6 = 0
I<=> x = 6
d) (8x - 3)(3x + 2) - (4x + 7)(x + 4) = (2x + 1)(5x - 1) - 33
<=> 24x2 + 16x - 9x - 6 - (4x2 + 16x + 7x + 28) = 10x2 - 2x + 5x - 1 - 33
<=> 24x2 + 16x - 9x - 6 - 4x2 - 16x - 7x - 28 - 10x2 + 2x - 5x + 1 + 33 = 0
<=> 10x2 - 19x = 0
<=> x(10x - 19) = 0
<=> x = 0 hay 10x - 19 = 0
I <=> 10x = 19
I <=> x = 19/10
a) ( x - 3 )2 - 4 = 0
<=> ( x - 3 )2 - 22 = 0
<=> ( x - 3 - 2 )( x - 3 + 2 ) = 0
<=> ( x - 5 )( x - 1 ) = 0
<=> x = 5 hoặc x = 1
b( 2x + 3 )2 - ( 2x + 1 )( 2x - 1 ) = 22
<=> 4x2 + 12x + 9 - ( 4x2 - 1 ) = 22
<=> 4x2 + 12x + 9 - 4x2 + 1 = 22
<=> 12x + 10 = 22
<=> 12x = 12
<=> x = 1
c) ( 4x + 3 )( 4x - 3 ) - ( 4x - 5 )2 = 16
<=> 16x2 - 9 - ( 16x2 - 40x + 25 ) = 16
<=> 16x2 - 9 - 16x2 + 40x - 25 = 16
<=> 40x - 34 = 16
<=> 40x = 50
<=> x = 50/40 = 5/4
d) x3 - 9x2 + 27x - 27 = -8
<=> ( x - 3 )3 = -8
<=> ( x - 3 )3 = (-2)3
<=> x - 3 = -2
<=> x = 1
e) ( x + 1 )3 - x2( x + 3 ) = 2
<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2
<=> 3x + 1 = 2
<=> 3x = 1
<=> x = 1/3
f) ( x - 2 )3 - x( x - 1 )( x + 1 ) + 6x2 = 5
<=> x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 6x2 = 5
<=> x3 + 12x - 8 - x3 + x = 5
<=> 13x - 8 = 5
<=> 13x = 13
<=> x = 1
a) \(\left(x-3\right)^2-4=0\)
=> \(\left(x-3\right)^2-2^2=0\)
=> \(\left(x-3-2\right)\left(x-3+2\right)=0\)
=> \(\left(x-5\right)\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
=> \(\left(2x+3\right)^2-\left[\left(2x\right)^2-1^2\right]=22\)
=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)
=> \(\left(2x\right)^2+2\cdot2x\cdot3+3^2-4x^2+1=22\)
=> \(4x^2+12x+9-4x^2+1=22\)
=> \(12x+9+1=22\)
=> \(12x+10=22\)
=> 12x = 12
=> x = 1
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
=> \(\left(4x\right)^2-3^2-\left[\left(4x\right)^2-2\cdot4x\cdot5+5^2\right]=16\)
=> \(16x^2-9-\left(16x^2-40x+25\right)=16\)
=> \(16x^2-9-16x^2+40x-25=16\)
=> \(-9+40x-25=16\)
=> \(40x=16+25-\left(-9\right)=16+25+9=50\)
=> x = 50/40 = 5/4
d) \(x^3-9x^2+27x-27=-8\)
=> \(x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3=8\)
=> \(\left(x-3\right)^3=-8\)
=> \(\left(x-3\right)^3=\left(-2\right)^3\)
=> x - 3 = -2 => x = 1
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
=> \(x^3+3x^2+3x+1-x^3-3x^2=2\)
=> \(3x+1=2\)
=> \(3x=1\)=> x = 1/3
f) \(\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x^2=5\)
=> \(x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3-x\left(x^2-1\right)+6x^2=5\)
=> \(x^3-6x^2+12x-8-x^3+x+6x^2=5\)
=> \(\left(12x+x\right)-8=5\)
=> 13x = 13
=> x = 1
đề là gì bạn,phân tích đa thức thành nhân tử hay rút gọn