Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Để PT có hai nghiệm pb thì \(\Delta=(2m-3)^2-4(m^2-3m)>0\)
\(\Leftrightarrow 9>0\) (luôn đúng với mọi \(m\in\mathbb{R}\) )
Ta có PT tương đương \((x-m)(x-m+3)=0\)
\(\Rightarrow\left\{\begin{matrix}x_1=m-3\\x_2=m\end{matrix}\right.\). Để hai nghiệm thuộc khoảng \((1,6)\) thì :
\(1< m,m-3<6\Rightarrow 4< m<6\)
b) Từ phần a) suy ra hệ thức độc lập là \(x_1-x_2=-3\)
c) \(A=x_2^3-x_1^3=m^3-(m-3)^3=9m^2-27m+27=9(m-\frac{3}{2})^2+\frac{27}{4}\geq \frac{27}{4}\)
Do đó \(A_{\min}=\frac{27}{4}\Leftrightarrow m=\frac{3}{2}\)
cho mik hỏi câu b chút, mik chưa hiểu tại sao1<m,m-3<6 lại suy ra đc 4<m<6 vậy ?
Ta có : delta =b^2 - 4ac
hay : -2(m+2)^2 - 4.(m^2 +4m +3)
<=> -(2m+4)^2 - 4.(m+2)^2 +1
<=> -(2m+4)^2 - (4m +8 )^2 +1
<=> - (2m+4 ) (2m-4) +1
<=> - (2m^2 + 16) +1 Vậy pt luôn có nghiệm với mọi m
Mình chỉ lm theo cách hiểu của mình ,sr nha vì mình ko giỏi phần này lắm
1)Xét pt hoành độ của (P) và (d) ta có:
\(x^2=2x+2m\)
\(x^2-2x-2m=0\)
thay m=\(\frac{1}{3}\)
\(x^2-2x-2.\frac{1}{3}=0\)
\(x^2-2x-\frac{2}{3}=0\)
GPT ta được:m=\(\frac{3+\sqrt{15}}{3}\)
m=\(\frac{3-\sqrt{15}}{3}\)
b)Vì A(x1;x2) thuộc (P)=>\(y_1=x_1^2\)
B(x2;y2) thuộc (P)=>\(y_2=x_2^2\)
áp dụng viet đc:
\(x_1+x_2=2\)
\(x_1.x_2=-2m\)
Ta có:(1+y1)(1+y2)=5
\(\left(1+x_1^2\right)\left(1+x_2^2\right)=5\)
\(1+x_2^2+x_1^2+x_1^2x_2^2=5\)
1+(x1+x2)^2-2x1x2+x1^2x2^2=5
1+(2)^2-2.(-2m)+(-2m)^2=5
1+4+4m+4m^2-5=0
4m^2+4m=0
m=-1 và m=0
2)Δ'=(-2m)^2-2.(2m^2-9)
=4m^2-4m^2+2
=2>0 ∀m
=>pt có 2 nghiệm phân biệt ∀ m
b)áp dụng viet:
x1+x2=4m/4=2m
x1.x2=2m^2-1/2
ta có :\(2x_1^2+4mx_2+2m^2-9< 0\)
\(2\left(x_1^2+2mx_2\right)+2m^2-9< 0\)
mà ta có x1+x2=2m
=>\(2\left(x_1^2+\left(x_1+x_2\right)x_2\right)+2m^2-9< 0\)
\(2\left(x_1^2+x_1x_2+x_2^2\right)+2m^2-9< 0\)
2{(x1^2+x2^2)+x1x2}+2m^2-9<0
2{x1+x2)^2-2x1x2+x1x2)+2m^2-9<0(cái này dùng phương pháp thêm bớt để tạo hàng đẳng thức nha bạn)
2{(x1+x2)^2-x1x2)+2m^2-9<0
còn lại bạn tự thay số rồi tính nha.Nhớ tick cho mk đó
giải pt tìm x1 ; x 2 theo m
sau đó giải BPT tìm m thối.x1>1 và x2 < 6
denta= (2m-3)^2 -4(m^2-3m)=9>0 => pt luôn có 2 nghiệm phân biệt với mọi x
*x1=[2m-3+9]/2=m+3
*x2=[2m-3-9]/2=m-6
Theo bài ra ta có: hai nghiệm x1, x2 cùng dương <=> P>0 và S>0
=> m>3 thì hai nghiệm x1, x2 luôn cùng dương.
Lời giải:
Để PT có hai nghiệm thì trước tiên :
\(\Delta =(2m+5)^2+4m^2>0\) ( luôn đúng với mọi số thực $m$ )
Theo định lý Viete PT có hai nghiệm \(x_1,x_2\) thỏa \(\left\{\begin{matrix}x_1+x_2=2m+5\\x_1x_2=-m^2\end{matrix}\right.\)
Có \(x_1<2< x_2\Leftrightarrow (x_1-2)(x_2-2)<0\)
\(\Leftrightarrow x_1x_2-2(x_1+x_2)+4<0\)
\(\Leftrightarrow m^2+4m+6>0\Leftrightarrow (m+2)^2+2>0\) (luôn đúng với mọi \(m\in\mathbb{R}\))
Vậy chỉ cần điều kiện \(m\in\mathbb{R}\)