Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho m, n là các số thực khác 0. nếu \(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx+n}{x-1}=3\) thì m.n=?
\(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx+n}{x-1}\) hữu hạn khi \(x^2+mx+n=0\) có nghiệm \(x=1\)
\(\Rightarrow1+m+n=0\Rightarrow n=-m-1\)
\(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx-m-1}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+m+1\right)}{x-1}=\lim\limits_{x\rightarrow1}\left(x+m+1\right)=m+2\)
\(\Rightarrow m+2=3\Rightarrow m=1\Rightarrow n=-2\)
\(\Rightarrow mn=-2\)
Do giới hạn hữu hạn nên \(x^2+mx+n=0\) có nghiệm \(x=1\)
\(\Rightarrow1+m+n=0\Rightarrow n=-m-1\)
\(\lim\limits_{x\rightarrow1}\dfrac{x^2+mx-m-1}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1\right)+m\left(x-1\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(x+1+m\right)}{x-1}=\lim\limits_{x\rightarrow1}\left(x+1+m\right)=m+2\)
\(\Rightarrow m+2=3\Rightarrow m=1\Rightarrow n=-2\)
Lời giải:
Theo định nghĩa về giới hạn thì khi \(\lim_{x\to -\infty}f(x)=2; \lim_{x\to -\infty}g(x)=3\) thì \(\lim_{x\to -\infty}[f(x)-2]=0; \lim_{x\to -\infty}[g(x)-3]=0\)
Khi đó, theo định nghĩa về giới hạn 0 thì với mọi số \(\epsilon >0\) ta tìm được tương ứng $n_1,n_2$ sao cho:
\(\left\{\begin{matrix} |f(x)-2|<\frac{\epsilon}{2}\forall n>n_1\\ |g(x)-3|< \frac{\epsilon}{2}\forall n>n_2\end{matrix}\right.\)
Gọi \(n_0=\max (n_1,n_2)\)
\(\Rightarrow |f(x)-2+g(x)-3|< |f(x)-2|+|g(x)-3|< \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \) \(\forall n>n_0\)
Điều này chứng tỏ \(f(x)-2+g(x)-3=f(x)+g(x)-5\) có giới hạn 0
\(\Rightarrow \lim_{x\to -\infty}[f(x)+g(x)]=5\)
Dạng toán tích phân, khá khó f(x)= F(x) + C
Mọi người không thích giúp đỡ, chỉ muốn lấy điểm, web học hiểu toán lại biến thành tựu trò chơi.
Đúng là mất thời gian, luống công mà.