x^2-căn3x=-căn 2x +căn6

 
">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2021

\(T=x^4+y^4+z^4\)

áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)

\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)

\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)

dấu "=" xảy rakhi và chỉ khi

\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)

vậy dấu "=" có xảy ra

\(< =>MIN:T=\frac{4}{3}\)

27 tháng 7 2021

sửa dòng 3 dưới lên 

\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)

Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)

Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)

16 tháng 8 2019

Bạn xem thêm trong câu hỏi tương tự xem có không

Nếu không thì cho mk xin lỗi đã làm mất thời gian của bạn.

Chúc bạn học tốt !

16 tháng 8 2019

Không có nha Pé Shusi !!!

#Học tốt

24 tháng 8 2019

Có ai rảnh ko

24 tháng 8 2019

Toán lớp 5???

24 tháng 8 2020

Bài làm:

Ta có: \(\left(x^2+2\right)=\left(2x+1\right)\sqrt{x}\)

\(\Leftrightarrow\left(x^2+2\right)^2=\left(2x+1\right)^2x\)

\(\Leftrightarrow x^4+4x^2+4=\left(4x^2+4x+1\right)x\)

\(\Leftrightarrow x^4-4x^3+4-x=0\)

\(\Leftrightarrow x^3\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^3-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\left(x^2+x+1\right)=0\)

Mà \(x^2+x+1>0\left(\forall x\right)\)

=> \(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

24 tháng 8 2020

Cho mk bổ sung cái đk là: \(x\ge0\) nhé:)

29 tháng 7 2019

\(\sqrt{\left(x-1\right)\left(x+1\right)}-\sqrt{\left(x-1\right)\left(-x+9\right)}-\sqrt{\left(2x-12\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-\sqrt{9-x}-\sqrt{2x-12}\right)=0\)

giải nốt nhá

sai thfi thông cảm nha

14 tháng 8 2019

a) \(\sqrt{\frac{3x-2}{x^2-2x+4}}=\sqrt{\frac{3x-2}{\left(x-1\right)^2+3}}\)

Mà \(\left(x-1\right)^2+3>0\)nên bt xác định\(\Leftrightarrow3x-2\ge0\Leftrightarrow x\ge\frac{2}{3}\)

14 tháng 8 2019

b)\(\sqrt{\frac{2x-3}{2x^2+1}}\)

Vì \(2x^2+1>0\)nên bt xác định\(\Leftrightarrow2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)