Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như bạn ghi thiếu dấu + đó
Bạn áp dụng hằng đẳng thức \(a^2+2ab+b^2=\left(a+b\right)^2\)
Khi đó\(a=x^2+1\)
\(b=x^2+6x-1\)
a) \(\dfrac{9x^2-6x+1}{9x^2-1}\)
\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{3x-1}{3x+1}\)
\(=\dfrac{3\cdot\left(-3\right)-1}{3\cdot\left(-3\right)+1}=\dfrac{-9-1}{-9+1}=\dfrac{-10}{-8}=\dfrac{5}{4}\)
b) Ta có: \(\dfrac{x^2-6x+9}{3x^2-9x}\)
\(=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}\)
\(=\dfrac{x-3}{3x}\)
\(=\dfrac{-\dfrac{1}{3}-3}{3\cdot\dfrac{-1}{3}}=\dfrac{-\dfrac{10}{3}}{-1}=\dfrac{10}{3}\)
c) Ta có: \(\dfrac{x^2-4x+4}{2x^2-4x}\)
\(=\dfrac{\left(x-2\right)^2}{2x\left(x-2\right)}\)
\(=\dfrac{x-2}{2x}\)
\(=\dfrac{\dfrac{-1}{2}-2}{2\cdot\dfrac{-1}{2}}=\dfrac{-\dfrac{5}{2}}{-1}=\dfrac{5}{2}\)
Bài 1:
a: \(\left(\dfrac{1}{3}x+2\right)\left(3x-6\right)\)
\(=x^2-3x+6x-12\)
\(=x^2+3x-12\)
b: \(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)
c: \(\left(-2xy+3\right)\left(xy+1\right)\)
\(=-2x^2y^2-2xy+3xy+3\)
\(=-2x^2y^2+xy+3\)
d: \(x\left(xy-1\right)\left(xy+1\right)\)
\(=x\left(x^2y^2-1\right)\)
\(=x^3y^2-x\)
Bài 2:
a: Ta có: \(M=\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(=27x^3+8\)
\(=27\cdot\dfrac{1}{27}+8=9\)
b: Ta có: \(N=\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)\)
\(=125x^3-8y^3\)
\(=125\cdot\dfrac{1}{125}-8\cdot\dfrac{1}{8}\)
=0
(Nhớ nha cái dấu trị tuyệt đối sẽ có hai Th xảy ra )
Ta có :\(\left|x-3\right|=x-2\)
Xảy ra 2 TH :
TH1 : \(\left|x-3\right|=x-2\) \(\Leftrightarrow\)x-3 = x-2 nếu x-3\(\ge\)0 hay x\(\ge\)3
\(\Rightarrow\)x-x=-2+3
\(\Rightarrow\)0=1 (vô nghiệm )
TH2 : \(\left|x-3\right|=x-2\)\(\Leftrightarrow\)3-x=x-2 nếu x-3 <0 hay x<3
\(\Rightarrow\)(-x)-x=(-2)-3
\(\Rightarrow\)-2x=-5
\(\Rightarrow\)x=\(\frac{5}{2}\)(TMĐK)
Vậy là kết quả đó đúng rồi nha ! chúc bạn học tốt !
sai rồi: (x4 + x2) - (9x3 + 9x)
= x2(x2 + 1) - 9x(x2 + 1)
= (x2 - 9x)(x2 + 1)
uk uk nhưng sao lại ra cái hàng thứ hai ý. giải thích hộ đi