K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

bn thử dùng bình phương xem nhưng nó quá dài và đặt ẩn phụ thì cũng vậy nên cách này là tối ưu nhất 

26 tháng 7 2021

TXĐ : \(D=\left[-2;6\right]\)

\(VT=x^2-6x+13=\left(x-3\right)^2+4\ge4\forall x\)

\(VP=\sqrt{6-x}+\sqrt{x+2}\frac{\le}{B.C.S}\sqrt{\left(1+1\right)\left(6+2\right)}=4\)

\(\Rightarrow VT=VP=4\) 

" = " \(\Leftrightarrow x=3\) (t/m)

31 tháng 5 2021

\(=>x^3=(\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)})^3\)

\(x^3=2\left(\sqrt{3}+1\right)-3.\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]^2.\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)

+\(3\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]^2\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]-2\left(\sqrt{3}-1\right)\)

\(x^3=\)

\(4-3\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)

\(x^3=4-3.\left[\sqrt[3]{4\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right].\)\(x\)

\(x^3=4-3\left[\sqrt[3]{4\left(3-1\right)}\right].x\)

\(x^3=4-3.2x\)

\(x^3=4-6x\)

thay \(x^3=4-6x\) vào A=>\(A=\left(4-6x+6x-5\right)^{2009}=\left(-1\right)^{2009}=-1\)

NV
26 tháng 2 2021

ĐKXĐ: \(x\ge-2\)

\(\Leftrightarrow x^3+3x\left(x+2\right)-4\left(x+2\right)\sqrt{x+2}=0\)

Đặt \(\sqrt{x+2}=y\ge0\) pt trở thành:

\(x^3+3xy^2-4y^3=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+4y^2\right)=0\)

\(\Leftrightarrow x=y\Leftrightarrow\sqrt{x+2}=x\) (\(x\ge0\))

\(\Leftrightarrow x^2=x+2\Leftrightarrow x=2\)

26 tháng 2 2021

\(ĐKXĐ:x\ge-2\)

\(\Leftrightarrow x^3+3x^2+6x-4x\sqrt{x+2}-8\sqrt{x+2}=0\Leftrightarrow4x^2-4x\sqrt{x+2}+8x-8\sqrt{x+2}+x^3-x\left(x+2\right)=0\Leftrightarrow4x\left(x-\sqrt{x+2}\right)+8\left(x-\sqrt{x+2}\right)+x\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)=0\)\(\Leftrightarrow\left(x-\sqrt{x+2}\right)\left(x^2+x\sqrt{x+2}+4x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{x+2}=0\left(1\right)\\x^2+x\sqrt{x+2}+4x+8=0\left(2\right)\end{matrix}\right.\) Từ (1) \(\Rightarrow x=\sqrt{x+2}\left(x\ge0\right)\Rightarrow x^2=x+2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-1\left(L\right)\end{matrix}\right.\) Từ (2) \(\Rightarrow x^2+x\sqrt{x+2}+4x+8\ge\left(-2\right)^2+\left(-2\right)\sqrt{-2+2}+4\left(-2\right)+8=4>0\) \(\Rightarrow\) ko có x 

vậy...

ĐKXĐ: (-6x+7)/(x^2+4x+6)>=0

=>-6x+7>=0

=>x<=7/6

20 tháng 11 2019

x,y là số nguyên tố đúng ko?

20 tháng 11 2019

ĐK \(-1\le x\le7\)

Ta có \(VT=x^2-6x+13=\left(x-3\right)^2+4\ge4\)(1)

\(2VP=\sqrt{4\left(7-x\right)}+\sqrt{4\left(x+1\right)}\le\frac{4+7-x+4+1+x}{2}=8\)

=> \(VP\le4\)(2)

Từ (1);(2)

=> đẳng thức xảy ra khi x=3(tm ĐKXĐ)

Vậy x=3

NV
21 tháng 3 2022

Đề bài ko chính xác, nếu x bất kì thì tồn tại vô số x để P nguyên

Nếu \(x\) nguyên thì mới có hữu hạn giá trị x

22 tháng 8 2021

bạn viết lại đề đi

22 tháng 8 2021

\(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}=5\)

dạ đây ạ

NV
11 tháng 7 2021

Đề bài không chính xác rồi em

Muốn khử được căn ba thì trong biểu thức \(\left(2x^2-6x+2008\right)^{...}\) phải có bậc 3, mà ở đây chỉ có bậc 2

11 tháng 7 2021

Em chép nhầm đề, lẽ ra là 2x3

13 tháng 11 2018

Ta có: \(A\cdot1=\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)

=> A = 3