Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=x^2-6x+11\)
\(=x^2-6x+9+2\)
\(=\left(x^2-6x+9\right)+2\)
\(=\left(x-3\right)^2+2\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi
\(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTNN của đa thức \(A=x^2-6x+11\) là 2 khi x=3
b) Ta có: \(B=x^2-4x+3\)
\(=x^2-4x+4-1\)
\(=\left(x^2-4x+4\right)-1\)
\(=\left(x-2\right)^2-1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1\forall x\)
Dấu '=' xảy ra khi
\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy: GTNN của đa thức \(B=x^2-4x+3\) là -1 khi x=2
c) Ta có: \(C=x^2+5x\)
\(=x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}-\frac{25}{4}\)
\(=\left(x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{25}{4}\)
Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{5}{2}\right)^2-\frac{25}{4}\ge\frac{-25}{4}\forall x\)
Dấu '=' xảy ra khi
\(\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=\frac{-5}{2}\)
Vậy: GTNN của đa thức \(C=x^2+5x\) là \(\frac{-25}{4}\) khi \(x=\frac{-5}{2}\)
d) Ta có: \(D=x^2+x+1\)
\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu '=' xảy ra khi
\(\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)
Vậy: GTNN của đa thức \(D=x^2+x+1\) là \(\frac{3}{4}\) khi \(x=\frac{-1}{2}\)
e) Ta có: \(E=4x^2+4x-2\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1-3\)
\(=\left[\left(2x\right)^2+2\cdot2x\cdot1+1\right]-3\)
\(=\left(2x+1\right)^2-3\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2-3\ge-3\forall x\)
Dấu '='xảy ra khi
\(\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
Vậy: GTNN của đa thức \(E=4x^2+4x-2\) là -3 khi \(x=\frac{-1}{2}\)
g) Ta có: \(G=x^2-7x\)
\(=x^2-2\cdot x\cdot\frac{7}{2}+\frac{49}{14}-\frac{49}{14}\)
\(=\left(x^2-2\cdot x\cdot\frac{7}{2}+\frac{49}{4}\right)-\frac{49}{4}\)
\(=\left(x-\frac{7}{2}\right)^2-\frac{49}{4}\)
Ta có: \(\left(x-\frac{7}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{7}{2}\right)^2-\frac{49}{4}\ge\frac{-49}{4}\forall x\)
Dấu '=' xảy ra khi
\(\left(x-\frac{7}{2}\right)^2=0\Leftrightarrow x-\frac{7}{2}=0\Leftrightarrow x=\frac{7}{2}\)
Vậy: GTNN của đa thức \(G=x^2-7x\) là \(\frac{-49}{4}\) khi \(x=\frac{7}{2}\)
\(A=x^2-6x+11\)
\(A=x^2-2.x.3+3^2-3^2+11\)
\(A=\left(x^2-6x+3^2\right)-3^2+11\)
\(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\forall x\)
=>\(\left(x-3\right)^2\ge0\ge2\forall x\)
Min A = 2 khi \(\left(x-3\right)^2=0\)
=> \(x-3=0hayx=3\)
Vậy Min A = 2 khi x = 3
\(B=x^2-4x+3\)
\(B=x^2-2.x.2+2^2-2^2+3\)
\(B=\left(x^2-4x+2^2\right)-4+3\)
\(B=\left(x-2\right)^2-1\)
=> \(\left(x-2\right)^2-1\ge0\forall x\)
MIn B = -1 khi \(\left(x-2\right)^2=0\)
=>\(\left(x-2\right)=0hayx=2\)
Vậy Min B = -1 khi x= 2
1) -3x2+5x=0
-x(3x-5)=0
suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5
2) x2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x-2)(x+3)=0
suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3
3) x2+6x-x-6=0
x(x+6)-(x+6)=0
(x-1)(x+6)=0. vậy nghiệm là 1 và -6
4) x2+2x-3x-6=0
x(x+2)-3(x+2)=0
(x-3)(x+2)=0
vậy nghiệm là -2 và 3
5) x(x-6)-4(x-6)=0
(x-4)(x-6)=0. vậy nghiệm là 4 và 6
6)x(x-8)-3(x-8)=0
(x-3)(x-8)=0
suy ra nghiệm là 3 và 8
7) x2-5x-24=0
x2-8x+3x-24=0
x(x-8)+3(x-8)=0
(x+3)(x-8)=0
vậy nghiệm là -3 và 8
câu 1: -3x2 + 5x = 0
suy ra -x(3x-5)=0
sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3
Bài 1:
a) \(25x^4-\frac{1}{9}y^2\)
\(=\left(5x^2\right)^2-\left(\frac{1}{3}y\right)^2\)
\(=\left(5x^2-\frac{1}{3}y\right).\left(5x^2+\frac{1}{3}y\right)\)
c) \(x^2-3\)
\(=x^2-\left(\sqrt{3}\right)^2\)
\(=\left(x-\sqrt{3}\right).\left(x+\sqrt{3}\right)\)
d) \(x^2-16x^2y^2z^2\)
\(=x^2-\left(4xyz\right)^2\)
\(=\left(x-4xyz\right).\left(x+4xyz\right)\)
Chúc bạn học tốt!
b, \(\left(x+5\right)y^2-\left(x+5\right)3\)
\(=\left(x+5\right)\left(y^2.3\right)\)
a, =[(x^2)^2+2x^2+1]-x^2
=(x^2+1)^2 - x^2
=(x^2+1-x^2)(x^2+1+2x^2)
=2x^2
d,4xy+3z-12y-xz
=(4xy-12y)+(3z-xz)
=4y(x-3)-z(x-3)
=(4y-z)(x-3)
1/\(x^2+5x+6=0\)
=>\(x^2+2x+3x+6=0\)
=>\(x\left(x+2\right)+3\left(x+2\right)=0\)
=>\(\left(x+2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)
Các câu sau làm tương tự câu 1, tách ghép khéo léo sẽ ra :)
Bài 1:
a/ \(x^2+2x+1+z^2+12z+36+1=\left(x+1\right)^2+\left(z+6\right)^2+1>0\) (đpcm)
b/ Câu này đề sai, hoặc là 14y là 4y hoặc là số cuối là 1 số to hơn 16 nhiều
Bài 2:
a/ ĐKXĐ: \(x\ne-5\)
\(\Leftrightarrow12=\left(x-3\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+2x-15=12\)
\(\Leftrightarrow x^2+2x-27=0\Rightarrow x=-1\pm2\sqrt{7}\)
b/ \(\Leftrightarrow\frac{7x}{2}-\frac{x}{3}=-\frac{6}{3}+\frac{1}{2}\)
\(\Leftrightarrow\frac{19}{6}x=-\frac{3}{2}\Rightarrow x=-\frac{9}{19}\)
c/ \(\Leftrightarrow\frac{x}{3}-\frac{x}{4}=6-\frac{1}{5}-\frac{1}{2}+\frac{2}{4}\)
\(\Leftrightarrow\frac{x}{12}=\frac{29}{5}\Rightarrow x=\frac{348}{5}\)
đề yêu cầu tìm x nk bn, giúp mink vs
<=>D=b\(^2\)-4ac
<=>(-5)\(^2\)-4(1.4)=9
=>x\(_{1,2}\)=\(\frac{-b+hoặc-\sqrt{D}}{2a}\)=\(\frac{5+hoặc-\sqrt[]{9}}{2}\)
=>x=1 hoặc 2