Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3\)+\(x^2\)=36
\(\Leftrightarrow\)\(x^3\)+\(x^2\)\(-36=0\)
\(\Leftrightarrow\)\(x^3\)\(-3x^2\)\(+4x^2\)\(-12x\)\(+12x-36=0\)
\(\Leftrightarrow\)\(x^2\left(x-3\right)+4x\left(x-3\right)+12\left(x-3\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2+4x+12\right)=0\)
Suy ra: \(x-3=0\) hoặc \(x^2+4x+12=0\)
- \(x-3=0\) \(\Leftrightarrow\) \(x=3\)
- \(x^2+4x+12=0\) (phương trình vô nghiệm)
Vậy \(x=3\)
câu a bạn sai đề nha
b)
\(\left(x^2+x+1\right)^2=3\left(x^4+x^2+1\right)\)
\(x^4+x^2+1+2x^3+2x^2+2x=3x^4+3x^2+3\)
\(2\left(x^3+x^2+x\right)=2\left(x^4+x^2+1\right)\)
\(x^4-x^3+1-x=0\)
\(x^3\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^3-1\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\x^3-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)
Vậy \(S=\left\{1\right\}\)
\(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24\)
Đặt \(a=x^2-5x\Rightarrow a^2=\left(x^2-5x\right)^2\)
Thay vào đẳng thức ta có:
\(a^2+10a+24\)
\(=a^2+6a+4a+24\)
\(=a\left(a+6\right)+4\left(a+6\right)\)
\(=\left(a+4\right)\left(a+6\right)\)
\(=\left(x^2-5x+6\right)\left(x^2-5x+4\right)\)
\(=\left(x^2-2x-3x+6\right)\left(x^2-x-4x+4\right)\)
\(=\left[x\left(x-3\right)-2\left(x-3\right)\right]\left[\left(x-1\right).x-4\left(x-1\right)\right]\)
\(=\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)\)
\(x\left(x-3\right)+x-3=0\)
\(\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
KL:......................
\(x^3-5x=0\)
\(x\left(x^2-5\right)=0\)
Làm tương tự như câu a
@_@ n...h..i......ề....u q...u.....................á!
Bài 4 : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
Đặt \(x^2+5x=a\) . Phương trình trở thành :
\(a^2-2a-24=0\)
\(\Leftrightarrow\left(a+4\right)\left(a-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+4=0\\a-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-4\\a=6\end{matrix}\right.\)
Với \(a=-4\)
\(\Leftrightarrow x^2+5x=-4\)
\(\Leftrightarrow x^2+5x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)
Với \(a=6\)
\(\Leftrightarrow x^2+5x=6\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-1;2;-3;-4\right\}\)
1) x4 - 5x2 + 4 = 0
⇔ x4 - x2 - 4x2 + 4 = 0
⇔ x2(x2 - 1) - 4(x2 - 1) = 0
⇔ (x2 - 1)(x2 - 4) = 0
⇔ \(\left\{{}\begin{matrix}x^2-1=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=\pm2\end{matrix}\right.\)
Vậy \(x=\pm1\)và \(x=\pm2\)
\(x^2-5x-24=0\)
\(x^2+3x-8x-24=0\)
\(x\cdot\left(x+3\right)-8\cdot\left(x+3\right)=0\)
\(\left(x+3\right)\cdot\left(x-8\right)=0\)
\(\hept{\begin{cases}x+3=0\\x-8=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\x=8\end{cases}}}\)
\(x^2-6x+8=0\)
\(x^2-2x-4x+8=0\)
\(x\cdot\left(x-2\right)-4\cdot\left(x-2\right)=0\)
\(\left(x-2\right)\cdot\left(x-4\right)=0\)
\(\hept{\begin{cases}x-2=0\\x-4=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=4\end{cases}}}\)
\(2x^2+5x^2-12x=0\)
\(\Leftrightarrow7x^2-12x=0\)
\(\Leftrightarrow x\left(7x-12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\7x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{12}{7}\end{cases}}\)
Bài 1 :
a) 2x3-3+3x2+8=0
b) x3-1=0
Bài 2 :
a) (x2-5x)2 + 10.(x2-5x)+24=0
b) (x+2)(x+3)(x-5)(x-6)=180
Bài 1:
a) Bạn xem lại đề
b)
\(x^3-1=0\)
\(\Leftrightarrow (x-1)(x^2+x+1)=0\)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}x+(\frac{1}{2})^2+\frac{3}{4}=(x+\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}>0\)
\(\Rightarrow x^2+x+1\neq 0\)
Do đó: \(x-1=0\Rightarrow x=1\) là nghiệm duy nhất
Bài 2:
a) \((x^2-5x)^2+10(x^2-5x)+24=0\)
\(\Leftrightarrow (x^2-5x)^2+2.5(x^2-5x)+5^2-1=0\)
\(\Leftrightarrow (x^2-5x+5)^2-1=0\)
\(\Leftrightarrow (x^2-5x+5-1)(x^2-5x+5+1)=0\)
\(\Leftrightarrow (x^2-5x+4)(x^2-5x+6)=0\)
\(\Leftrightarrow (x-1)(x-4)(x-2)(x-3)=0\)
\(\Rightarrow \left[\begin{matrix} x-1=0\\ x-4=0\\ x-2=0\\ x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=4\\ x=2\\ x=3\end{matrix}\right.\)
b)
\((x+2)(x+3)(x-5)(x-6)=180\)
\(\Leftrightarrow [(x+2)(x-5)][(x+3)(x-6)]=180\)
\(\Leftrightarrow (x^2-3x-10)(x^2-3x-18)=180\)
\(\Leftrightarrow a(a-8)=180\) (đặt \(x^2-3x-10=a\) )
\(\Leftrightarrow a^2-8a+16-196=0\)
\(\Leftrightarrow (a-4)^2-14^2=0\)
\(\Leftrightarrow (a-4-14)(a-4+14)=0\Leftrightarrow (a-18)(a+10)=0\)
\(\Rightarrow a=18\) hoặc $a=-10$
+) Nếu $a=18$ thì \(x^2-3x-10=18\)
\(\Leftrightarrow x^2-3x-28=0\)
\(\Leftrightarrow (x-7)(x+4)=0\Rightarrow \left[\begin{matrix} x=7\\ x=-4\end{matrix}\right.\)
+) Nếu $a=-10$ thì \(x^2-3x-10=-10\Leftrightarrow x^2-3x=0\Leftrightarrow x(x-3)=0\)
\(\Leftrightarrow \left[\begin{matrix} x=0\\ x=3\end{matrix}\right.\)
Vậy pt có 4 nghiệm \(x\in \left\{7;-4;0;3\right\}\)
\(2x^3+5x^2-12x=0\)
\(\Rightarrow x\cdot\left(2x^2+5x-12\right)=0\)
\(\Rightarrow x\cdot\left(2x^2-3x+8x-12\right)=0\)
\(\Rightarrow x\cdot\left[x\cdot\left(2x-3\right)+4\cdot\left(2x-3\right)\right]=0\)
\(\Rightarrow x\cdot\left(2x-3\right)\cdot\left(x+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\2x-3=0\\x+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\\x=-4\end{cases}}\)
\(x^2-5x-24=0\)
\(\Rightarrow x^2+3x-8x-24=0\)
\(\Rightarrow x\cdot\left(x+3\right)-8\cdot\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\cdot\left(x-8\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+3=0\\x-8=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\x=8\end{cases}}}\)
\(x^2-6x+8=0\)
\(\Rightarrow x^2-2x-4x+8=0\)
\(\Rightarrow x\cdot\left(x-2\right)-4\cdot\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\cdot\left(x-4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\x-4=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=4\end{cases}}}\)
a: \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)\)
\(=\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)\)
b: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)
\(\Leftrightarrow x^2+x-6=0\)
=>(x+3)(x-2)=0
=>x=-3 hoặc x=2
f(x)g(x)=0<=>f(x)=0 hoặc g(x)=0
<=>(x2-5x)2+10(x2-5x)+24=(x-4)(x-3)(x-2)(x-1)
TH1:x-4=0
=>x=4
TH2:x-3=0
=>x=3
TH3:x-2=0
=>x=2
TH4:x-1=0
=>x=1
vậy giá trị nguyên của x lần lượt là {1;2;3;4}