Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(p=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)+2010\)\(=\left(x^3+1\right)+x-\left(x^3-1\right)+2010=x^3+1+x-x^3+1+2010=x+2012\)Với \(x=-2010\Rightarrow p=-2010+2012=2\)
\(q=16x\left(4x^2-5\right)-\left(4x+1\right)\left(16x^2-4x+1\right)=64x^3-80x-64x^3-1=-80x-1\)Với \(x=\dfrac{1}{5}\Rightarrow q=-80.\dfrac{1}{5}-1=-17\)
a) Ta có: \(\left(x-2\right)\cdot x=2x\cdot\left(x+5\right)\)
\(\Leftrightarrow x\cdot\left(x-2\right)-2x\left(x+5\right)=0\)
\(\Leftrightarrow x\cdot\left[x-2-2\left(x+5\right)\right]=0\)
\(\Leftrightarrow x\left(x-2-2x-10\right)=0\)
\(\Leftrightarrow x\left(-x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Vậy: S={0;-8}
b) Ta có: \(\left(2x-5\right)\left(x+11\right)=\left(5-2x\right)\left(2x+1\right)\)
\(\Leftrightarrow\left(2x-5\right)\left(x+11\right)-\left(5-2x\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+11\right)+\left(2x-5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+11+2x+1\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(3x+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x+12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\3x=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-4\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{5}{2};-4\right\}\)
c) Ta có: \(x^2+6x+9=4x^2\)
\(\Leftrightarrow\left(x+3\right)^2-\left(2x\right)^2=0\)
\(\Leftrightarrow\left(x+3-2x\right)\left(x+3+2x\right)=0\)
\(\Leftrightarrow\left(-x+3\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x+3=0\\3x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=-3\\3x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy: S={3;-1}
d) Ta có: \(\left(x+2\right)\left(5-4x\right)=x^2+4x+4\)
\(\Leftrightarrow\left(x+2\right)\left(5-4x\right)-\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(5-4x\right)-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(5-4x-x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(-5x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\-5x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{-2;\dfrac{3}{5}\right\}\)
rút gọn biểu thức
a) \(4x^2-\left(x+3\right).\left(x-5\right)+x\)
\(=4x^2-\left(x^2-5x+3x-15\right)+x\)
\(=4x^2-x^2+5x-3x+15+x\)
\(=3x^2+3x+15.\)
b) \(x.\left(x-5\right)-3x.\left(x+1\right)\)
\(=x^2-5x-\left(3x^2+3x\right)\)
\(=x^2-5x-3x^2-3x\)
\(=-2x^2-8x.\)
d) \(\left(x+3\right).\left(x-1\right)-\left(x-7\right).\left(x-6\right)\)
\(=x^2-x+3x-3-\left(x^2-6x-7x+42\right)\)
\(=x^2-x+3x-3-x^2+6x+7x-42\)
\(=15x-45.\)
Chúc bạn học tốt!
1: \(\Leftrightarrow-4x^2+3x-4x^2+8x=10\)
=>-8x^2+11x-10=0
=>\(x\in\varnothing\)
2: \(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)
=>-14x+5=x-2
=>-15x=-7
=>x=7/15
3: \(\Leftrightarrow12x^2-12x^2+20x=10x-17\)
=>10x=-17
=>x=-17/10
4: \(\Leftrightarrow4x^2-2x+3-4x^2+20x=7x-3\)
=>18x+3=7x-3
=>11x=-6
=>x=-6/11
5: \(\Leftrightarrow-3x+15+5x-5+3x^2=4-x\)
\(\Leftrightarrow3x^2+2x+10-4+x=0\)
=>3x^2+3x+6=0
hay \(x\in\varnothing\)
a) 4x2 - 2x + 3 - 4x.(x - 5) = 7x - 3
--> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3
--> 4x2 - 2x - 4x2 + 20x - 7x = -3 - 3
--> 11x = -6
--> x = \(\frac{-6}{11}\)
b) -3x.(x - 5) + 5.(x - 1) + 3x2 = 4x
--> -3x2 + 15x + 5x - 5 + 3x2 = 4x
--> -3x2 + 15x + 5x + 3x2 - 4x = 5
--> 16x = 5
--> x = \(\frac{5}{16}\)
c) 7x.(x - 2) - 5.(x - 1) = 21x2 - 14x2 + 3
--> 7x2 - 14x - 5x + 5 = 7x2 + 3
--> 7x2 - 14x - 5x - 7x2 = -5 + 3
--> -19x = -2
--> x = \(\frac{2}{19}\)
d) 3.(5x - 1) - x.(x - 2) + x2 - 13x = 7
--> 15x - 3 - x2 + 2x + x2 - 13x = 7
--> 15x - x2 + 2x + x2 - 13x = 3 + 7
--> 4x = 10
--> x = \(\frac{5}{2}\)
e) \(\frac{1}{5}\)x.(10x - 15) - 2x.(x - 5) = 12
--> 2x2 - 3x - 2x2 + 10x = 12
--> 7x = 12
--> x = \(\frac{12}{7}\)
~ Học tốt ~
a) 4x2 - 2x + 3 - 4x(x - 5) = 7x - 3
=> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3
=> 18x + 3 = 7x - 3
=> 18x - 7x = -3 - 3
=> 11x = -6
=> x = -6/11
b) -3x(x - 5) + 5(x - 1) + 3x2 = 4x
=> -3x2 + 15x + 5x - 5 + 3x2 = 4x
=> 20x - 5 = 4x
=> 20x - 4x = 5
=> 16x = 5
=> x = 5/16
\(c,7x\left(x-2\right)-5\left(x-1\right)=21x^2-14x^2+3\)
\(\Leftrightarrow7x^2-14x-5x+5=7x^2+3\)
\(\Leftrightarrow7x^2-7x^2-19x=3-5\)
\(\Leftrightarrow-19x=-2\)
\(\Leftrightarrow x=\frac{2}{19}\)
a: \(\Leftrightarrow x\left(2x+10\right)-x\left(x-2\right)=0\)
=>x(2x+10-x+2)=0
=>x(x+12)=0
=>x=0 hoặc x=-12
b: \(\Leftrightarrow\left(2x-5\right)\left(x+11\right)+\left(2x-5\right)\left(2x+1\right)=0\)
=>(2x-5)(3x+12)=0
=>x=5/2 hoặc x=-4
c: \(\Leftrightarrow\left(2x\right)^2-\left(x+3\right)^2=0\)
=>(x-3)(3x+3)=0
=>x=3 hoặc x=-1
d: \(\Leftrightarrow\left(x+2\right)\left(5-4x\right)-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(5-4x-x-2\right)=0\)
=>(x+2)(-5x+3)=0
=>x=-2 hoặc x=3/5
\(a,\left(x-2\right)x=2x\left(x+5\right)\)
\(\Leftrightarrow\left(x-2\right)x-2x\left(x+5\right)=0\)
\(\Leftrightarrow x.\left(x-2-2x-10\right)=0\)
\(\Leftrightarrow x\left(-x-12\right)=0\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+12=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-12\end{matrix}\right.\)
v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4c^3\right)\)
\(=-\dfrac{1}{2}\left(2x+6-4c^3\right)+3\left(2x+6-4c^3\right)\)
\(=-x^2-3x+2c^3x+6x+18-12c^3\)
\(=-x^2+3x+2c^3x+18-12c^3\)
f) \(\left(2x-5\right)\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)-5\left(x^2-x+3\right)\)
\(=2x^3-2x^2+6x-5x^2+5x-15\)
\(=2x^3-7x^2+11x-15\)
w) \(\left(3x+1\right)\left(x^2-2x-5\right)\)
\(=3x\left(x^2-2x-5\right)+\left(x^2-2x-5\right)\)
\(=3x^3-6x^2-15x+x^2-2x-5\)
\(=3x^3-5x^2-17x-5\)
x) \(\left(6x-3\right)\left(x^2+x-1\right)\)
\(=6x\left(x^2+x-1\right)-3\left(x^2+x-1\right)\)
\(=6x^3+6x^2-6x-3x^2-3x+3\)
\(=6x^3+3x^2-9x+3\)
y) \(\left(5x-2\right)\left(3x+1-x^2\right)\)
\(=5x\left(3x+1-x^2\right)-2\left(3x+1-x^2\right)\)
\(=15x^2+5x-5x^3-6x-2+2x^2\)
\(=-5x^3+17x^2-x-2\)
z) \(\left(\dfrac{3}{4}x+1\right)\left(4x^2+4x+4\right)\)
\(=\dfrac{3}{4}x\left(4x^2+4x+4\right)+\left(4x^2+4x+4\right)\)
\(=3x^3+3x^2+3x+4x^2+4x+4\)
\(=3x^3+7x^2+7x+4\)
f: =2x^3-2x^2+6x-5x^2+5x-15
=2x^3-7x^2+11x-15
w: =3x^3-6x^2-15x+x^2-2x-5
=3x^3-5x^2-17x-5
x: =6x^3+6x^2-6x-3x^2-3x+3
=6x^3+3x^2-9x+3
y: =(5x-2)(-x^2+3x+1)
=-5x^3+15x^2+5x+2x^2-6x-2
=-5x^3+17x^2-x-2
z: =3x^3+3x^2+3x+4x^2+4x+4
=3x^3+7x^2+7x+4
X=2 nha bn