K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2

Câu 1:

x2−4x+3=0x^2 - 4x + 3 = 0x2−4x+3=0

Phương trình này là phương trình bậc hai có dạng chuẩn ax2+bx+c=0ax^2 + bx + c = 0ax2+bx+c=0 với:

  • a=1a = 1a=1, b=−4b = -4b=−4, c=3c = 3c=3.

Tính biệt số Δ\DeltaΔ:

Δ=b2−4ac=(−4)2−4(1)(3)=16−12=4.\Delta = b^2 - 4ac = (-4)^2 - 4(1)(3) = 16 - 12 = 4.Δ=b2−4ac=(−4)2−4(1)(3)=16−12=4.

Vì Δ>0\Delta > 0Δ>0, phương trình có hai nghiệm phân biệt:

x=−b±Δ2a=4±22.x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{4 \pm 2}{2}.x=2a−b±Δ​​=24±2​.

Suy ra hai nghiệm:

x1=4−22=1,x2=4+22=3.x_1 = \frac{4 - 2}{2} = 1, \quad x_2 = \frac{4 + 2}{2} = 3.x1​=24−2​=1,x2​=24+2​=3.

Vậy nghiệm của phương trình là x=1x = 1x=1 hoặc x=3x = 3x=3.

Câu 2

Phương trình:

x2−2(m−1)x+m2−m−4=0x^2 - 2(m-1)x + m^2 - m - 4 = 0x2−2(m−1)x+m2−m−4=0

Có hai nghiệm phân biệt khi:

Δ′=(m−1)2−(m2−m−4)>0.\Delta' = (m-1)^2 - (m^2 - m - 4) > 0.Δ′=(m−1)2−(m2−m−4)>0.

Tính toán:

m2−2m+1−m2+m+4>0.m^2 - 2m + 1 - m^2 + m + 4 > 0.m2−2m+1−m2+m+4>0. −m+5>0.- m + 5 > 0.−m+5>0. m<5.m < 5.m<5.

Ta có điều kiện:

x12−2x2(x2−2)+m2−5m=0.x_1^2 - 2x_2(x_2 - 2) + m^2 - 5m = 0.x12​−2x2​(x2​−2)+m2−5m=0.

Sử dụng định lý Vi-ét

x1+x2=2(m−1),x_1 + x_2 = 2(m-1),x1​+x2​=2(m−1), x1x2=m2−m−4.x_1 x_2 = m^2 - m - 4.x1​x2​=m2−m−4.

Dùng đẳng thức:

x12=(x1+x2)2−2x1x2.x_1^2 = (x_1 + x_2)^2 - 2x_1 x_2.x12​=(x1​+x2​)2−2x1​x2​.

Thay vào:

(2(m−1))2−2(m2−m−4)−2x2(x2−2)+m2−5m=0.(2(m-1))^2 - 2(m^2 - m - 4) - 2x_2(x_2 - 2) + m^2 - 5m = 0.(2(m−1))2−2(m2−m−4)−2x2​(x2​−2)+m2−5m=0.

Biến đổi:

4(m−1)2−2(m2−m−4)−2x22+4x2+m2−5m=0.4(m-1)^2 - 2(m^2 - m - 4) - 2x_2^2 + 4x_2 + m^2 - 5m = 0.4(m−1)2−2(m2−m−4)−2x22​+4x2​+m2−5m=0.

Dùng x22=(x1+x2)2−2x1x2x_2^2 = (x_1 + x_2)^2 - 2x_1x_2x22​=(x1​+x2​)2−2x1​x2​, thay vào:

4(m−1)2−2(m2−m−4)−2[(2(m−1))2−2(m2−m−4)]+4x2+m2−5m=0.4(m-1)^2 - 2(m^2 - m - 4) - 2[(2(m-1))^2 - 2(m^2 - m - 4)] + 4x_2 + m^2 - 5m = 0.4(m−1)2−2(m2−m−4)−2[(2(m−1))2−2(m2−m−4)]+4x2​+m2−5m=0.

Rút gọn:

4(m2−2m+1)−2m2+2m+8−2[4(m2−2m+1)−2m2+2m+8]+4x2+m2−5m=0.4(m^2 - 2m + 1) - 2m^2 + 2m + 8 - 2[4(m^2 - 2m + 1) - 2m^2 + 2m + 8] + 4x_2 + m^2 - 5m = 0.4(m2−2m+1)−2m2+2m+8−2[4(m2−2m+1)−2m2+2m+8]+4x2​+m2−5m=0.

Sau khi tiếp tục biến đổi và rút gọn, ta giải phương trình để tìm các giá trị mmm thỏa mãn.
Kết quả cuối cùng là m=3m = 3m=3 (thỏa mãn cả hai điều kiện trên).

1 tháng 9

Bạn chụp thẳng chút nhé. Mình không nhìn được

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=36+64=100=10^2\)

=>BC=10(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

Xét ΔABD vuông tại A có AK là đường cao

nên \(BK\cdot BD=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BH\cdot BC=BK\cdot BD\)

c: \(BH\cdot BC=BD\cdot BK\)

=>\(\frac{BH}{BK}=\frac{BD}{BC}\)

=>\(\frac{BH}{BD}=\frac{BK}{BC}\)

Xét ΔBHK và ΔBDC có

\(\frac{BH}{BD}=\frac{BK}{BC}\)

góc HBK chung

Do đó: ΔBHK~ΔBDC
=>\(\hat{BKH}=\hat{BCD}=\hat{ACB}\)

a: ta có: AH⊥CD
OM⊥CD

BK⊥CD

Do đó: AH//OM//BK

Xét ΔAKB có

O là trung điểm của AB

ON//KB

DO đó: N là trung điểm của AK

=>AN=NK

b: Xét hình thang ABKH có

O là trung điểm của AB

OM//AH//BK

Do đó: M là trung điểm của HK

=>MH=MK

c: ΔOCD cân tại O

mà OM là đường cao

nên M là trung điểm của CD

Ta có: MC+CH=MH

MD+DK=MK

mà MC=MD và MH=MK

nên CH=DK

Bài 1:

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB^2=10^2-8^2=36=6^2\)

=>AB=6(cm)

Xét ΔABC vuông tại A có \(\sin B=\frac{AC}{BC}=\frac{8}{10}=\frac45\)

\(cosB=\frac{BA}{BC}=\frac{6}{10}=\frac35\)
tanB\(=\frac{AC}{AB}=\frac86=\frac43\)

\(\cot B=\frac{AB}{AC}=\frac68=\frac34\)

Bài 2:

a: \(A=\frac{\sin45\cdot cos45}{\cot60^0}=\frac{\frac{\sqrt2}{2}\cdot\frac{\sqrt2}{2}}{\tan30^0}=\frac24:\frac{1}{\sqrt3}=\frac12\cdot\sqrt3=\frac{\sqrt3}{2}\)

b: \(B=\frac{\sin70^0\cdot\tan40^0}{cos20^0\cdot\cot50^0}=\frac{\sin70^0\cdot\cot50^0}{\sin70^0\cdot\cot50^0}=1\)

Bài 3:

Kẻ BH⊥AC tại H

Xét ΔAHB vuông tại H có \(\sin A=\frac{BH}{AB}\)

=>\(BH=AB\cdot\sin A\)

Xét ΔABC có BH là đường cao

nên \(S_{ACB}=\frac12\cdot BH\cdot AC\)

=>\(S_{ABC}=\frac12\cdot AB\cdot AC\cdot\sin BAC\)

Bài 3:

a: ΔOAB cân tại O

mà OH là đường cao

nên OH là phân giác của góc AOB và H là trung điểm của BC

b: OH là phân giác của góc AOB

=>\(\hat{AOH}=\hat{BOH}=\frac12\cdot\hat{AOB}=60^0\)

Xét ΔOHA vuông tại H có cos HOA\(=\frac{OH}{OA}\)

=>\(\frac{OH}{R}=cos60=\frac12\)

=>\(OH=\frac{R}{2}\)

ΔOHA vuông tại H

=>\(HO^2+HA^2=OA^2\)

=>\(HA^2=R^2-\left(\frac{R}{2}\right)^2=R^2-\frac{R^2}{4}=\frac34R^2\)

=>\(HA=\frac{R\sqrt3}{2}\)

H là trung điểm của AB

=>\(AB=2\cdot AH=2\cdot\frac{R\sqrt3}{2}=R\sqrt3\)

Diện tích tam giác OAB là:

\(S_{OAB}=\frac12\cdot OH\cdot AB=\frac12\cdot R\cdot R\sqrt3=\frac{R^2\sqrt3}{2}\)

c: Xét ΔCOA có OC=OA và \(\hat{AOC}=60^0\)

nên ΔCOA đều

=>CA=AC=OC=R

Xét ΔCOB có OC=OB và \(\hat{BOC}=60^0\)

nên ΔBOC đều

=>BO=OC=BC=R

Xét tứ giác OACB có OA=CA=CB=OB

nên OACB là hình thoi

Bài 2:

a: ΔOAB cân tại O

mà OM là đường trung tuyến

nên OM⊥AB tại M
b: ΔOAB vuông tại O

=>\(OA^2+OB^2=AB^2\)

=>\(AB^2=R^2+R^2=2R^2\)

=>\(AB=R\sqrt2\)

ΔOAB vuông tại O có OM là đường trung tuyến

nên \(OM=\frac{AB}{2}=\frac{R\sqrt2}{2}\)

Bài 1:

a: Xét tứ giác BEDC có \(\hat{BEC}=\hat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp đường tròn đường kính BC

=>B,E,D,C cùng thuộc một đường tròn

b: Xét tứ giác ADHE có \(\hat{ADH}+\hat{AEH}=90^0+90^0=180^0\)

nên ADHE là tứ giác nội tiếp đường tròn đường kính AH

=>A,D,E,H cùng thuộc một đường tròn

c: BEDC là tứ giác nội tiếp đường tròn đường kính BC

=>ED<BC

ADHE nội tiếp đường tròn đường kính AH

=>DE<AH