
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=36+64=100=10^2\)
=>BC=10(cm)
Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)
nên \(\hat{C}\) ≃37 độ
ΔABC vuông tại A
=>\(\hat{B}+\hat{C}=90^0\)
=>\(\hat{B}=90^0-37^0=53^0\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\left(1\right)\)
Xét ΔABD vuông tại A có AK là đường cao
nên \(BK\cdot BD=BA^2\left(2\right)\)
Từ (1),(2) suy ra \(BH\cdot BC=BK\cdot BD\)
c: \(BH\cdot BC=BD\cdot BK\)
=>\(\frac{BH}{BK}=\frac{BD}{BC}\)
=>\(\frac{BH}{BD}=\frac{BK}{BC}\)
Xét ΔBHK và ΔBDC có
\(\frac{BH}{BD}=\frac{BK}{BC}\)
góc HBK chung
Do đó: ΔBHK~ΔBDC
=>\(\hat{BKH}=\hat{BCD}=\hat{ACB}\)

a: ta có: AH⊥CD
OM⊥CD
BK⊥CD
Do đó: AH//OM//BK
Xét ΔAKB có
O là trung điểm của AB
ON//KB
DO đó: N là trung điểm của AK
=>AN=NK
b: Xét hình thang ABKH có
O là trung điểm của AB
OM//AH//BK
Do đó: M là trung điểm của HK
=>MH=MK
c: ΔOCD cân tại O
mà OM là đường cao
nên M là trung điểm của CD
Ta có: MC+CH=MH
MD+DK=MK
mà MC=MD và MH=MK
nên CH=DK

Bài 1:
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB^2=10^2-8^2=36=6^2\)
=>AB=6(cm)
Xét ΔABC vuông tại A có \(\sin B=\frac{AC}{BC}=\frac{8}{10}=\frac45\)
\(cosB=\frac{BA}{BC}=\frac{6}{10}=\frac35\)
tanB\(=\frac{AC}{AB}=\frac86=\frac43\)
\(\cot B=\frac{AB}{AC}=\frac68=\frac34\)
Bài 2:
a: \(A=\frac{\sin45\cdot cos45}{\cot60^0}=\frac{\frac{\sqrt2}{2}\cdot\frac{\sqrt2}{2}}{\tan30^0}=\frac24:\frac{1}{\sqrt3}=\frac12\cdot\sqrt3=\frac{\sqrt3}{2}\)
b: \(B=\frac{\sin70^0\cdot\tan40^0}{cos20^0\cdot\cot50^0}=\frac{\sin70^0\cdot\cot50^0}{\sin70^0\cdot\cot50^0}=1\)
Bài 3:
Kẻ BH⊥AC tại H
Xét ΔAHB vuông tại H có \(\sin A=\frac{BH}{AB}\)
=>\(BH=AB\cdot\sin A\)
Xét ΔABC có BH là đường cao
nên \(S_{ACB}=\frac12\cdot BH\cdot AC\)
=>\(S_{ABC}=\frac12\cdot AB\cdot AC\cdot\sin BAC\)

Bài 3:
a: ΔOAB cân tại O
mà OH là đường cao
nên OH là phân giác của góc AOB và H là trung điểm của BC
b: OH là phân giác của góc AOB
=>\(\hat{AOH}=\hat{BOH}=\frac12\cdot\hat{AOB}=60^0\)
Xét ΔOHA vuông tại H có cos HOA\(=\frac{OH}{OA}\)
=>\(\frac{OH}{R}=cos60=\frac12\)
=>\(OH=\frac{R}{2}\)
ΔOHA vuông tại H
=>\(HO^2+HA^2=OA^2\)
=>\(HA^2=R^2-\left(\frac{R}{2}\right)^2=R^2-\frac{R^2}{4}=\frac34R^2\)
=>\(HA=\frac{R\sqrt3}{2}\)
H là trung điểm của AB
=>\(AB=2\cdot AH=2\cdot\frac{R\sqrt3}{2}=R\sqrt3\)
Diện tích tam giác OAB là:
\(S_{OAB}=\frac12\cdot OH\cdot AB=\frac12\cdot R\cdot R\sqrt3=\frac{R^2\sqrt3}{2}\)
c: Xét ΔCOA có OC=OA và \(\hat{AOC}=60^0\)
nên ΔCOA đều
=>CA=AC=OC=R
Xét ΔCOB có OC=OB và \(\hat{BOC}=60^0\)
nên ΔBOC đều
=>BO=OC=BC=R
Xét tứ giác OACB có OA=CA=CB=OB
nên OACB là hình thoi
Bài 2:
a: ΔOAB cân tại O
mà OM là đường trung tuyến
nên OM⊥AB tại M
b: ΔOAB vuông tại O
=>\(OA^2+OB^2=AB^2\)
=>\(AB^2=R^2+R^2=2R^2\)
=>\(AB=R\sqrt2\)
ΔOAB vuông tại O có OM là đường trung tuyến
nên \(OM=\frac{AB}{2}=\frac{R\sqrt2}{2}\)
Bài 1:
a: Xét tứ giác BEDC có \(\hat{BEC}=\hat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>B,E,D,C cùng thuộc một đường tròn
b: Xét tứ giác ADHE có \(\hat{ADH}+\hat{AEH}=90^0+90^0=180^0\)
nên ADHE là tứ giác nội tiếp đường tròn đường kính AH
=>A,D,E,H cùng thuộc một đường tròn
c: BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>ED<BC
ADHE nội tiếp đường tròn đường kính AH
=>DE<AH
Câu 1:
x2−4x+3=0x^2 - 4x + 3 = 0x2−4x+3=0
Phương trình này là phương trình bậc hai có dạng chuẩn ax2+bx+c=0ax^2 + bx + c = 0ax2+bx+c=0 với:
Tính biệt số Δ\DeltaΔ:
Δ=b2−4ac=(−4)2−4(1)(3)=16−12=4.\Delta = b^2 - 4ac = (-4)^2 - 4(1)(3) = 16 - 12 = 4.Δ=b2−4ac=(−4)2−4(1)(3)=16−12=4.
Vì Δ>0\Delta > 0Δ>0, phương trình có hai nghiệm phân biệt:
x=−b±Δ2a=4±22.x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{4 \pm 2}{2}.x=2a−b±Δ=24±2.
Suy ra hai nghiệm:
x1=4−22=1,x2=4+22=3.x_1 = \frac{4 - 2}{2} = 1, \quad x_2 = \frac{4 + 2}{2} = 3.x1=24−2=1,x2=24+2=3.
Vậy nghiệm của phương trình là x=1x = 1x=1 hoặc x=3x = 3x=3.
Câu 2
Phương trình:
x2−2(m−1)x+m2−m−4=0x^2 - 2(m-1)x + m^2 - m - 4 = 0x2−2(m−1)x+m2−m−4=0
Có hai nghiệm phân biệt khi:
Δ′=(m−1)2−(m2−m−4)>0.\Delta' = (m-1)^2 - (m^2 - m - 4) > 0.Δ′=(m−1)2−(m2−m−4)>0.
Tính toán:
m2−2m+1−m2+m+4>0.m^2 - 2m + 1 - m^2 + m + 4 > 0.m2−2m+1−m2+m+4>0. −m+5>0.- m + 5 > 0.−m+5>0. m<5.m < 5.m<5.
Ta có điều kiện:
x12−2x2(x2−2)+m2−5m=0.x_1^2 - 2x_2(x_2 - 2) + m^2 - 5m = 0.x12−2x2(x2−2)+m2−5m=0.
Sử dụng định lý Vi-ét
x1+x2=2(m−1),x_1 + x_2 = 2(m-1),x1+x2=2(m−1), x1x2=m2−m−4.x_1 x_2 = m^2 - m - 4.x1x2=m2−m−4.
Dùng đẳng thức:
x12=(x1+x2)2−2x1x2.x_1^2 = (x_1 + x_2)^2 - 2x_1 x_2.x12=(x1+x2)2−2x1x2.
Thay vào:
(2(m−1))2−2(m2−m−4)−2x2(x2−2)+m2−5m=0.(2(m-1))^2 - 2(m^2 - m - 4) - 2x_2(x_2 - 2) + m^2 - 5m = 0.(2(m−1))2−2(m2−m−4)−2x2(x2−2)+m2−5m=0.
Biến đổi:
4(m−1)2−2(m2−m−4)−2x22+4x2+m2−5m=0.4(m-1)^2 - 2(m^2 - m - 4) - 2x_2^2 + 4x_2 + m^2 - 5m = 0.4(m−1)2−2(m2−m−4)−2x22+4x2+m2−5m=0.
Dùng x22=(x1+x2)2−2x1x2x_2^2 = (x_1 + x_2)^2 - 2x_1x_2x22=(x1+x2)2−2x1x2, thay vào:
4(m−1)2−2(m2−m−4)−2[(2(m−1))2−2(m2−m−4)]+4x2+m2−5m=0.4(m-1)^2 - 2(m^2 - m - 4) - 2[(2(m-1))^2 - 2(m^2 - m - 4)] + 4x_2 + m^2 - 5m = 0.4(m−1)2−2(m2−m−4)−2[(2(m−1))2−2(m2−m−4)]+4x2+m2−5m=0.
Rút gọn:
4(m2−2m+1)−2m2+2m+8−2[4(m2−2m+1)−2m2+2m+8]+4x2+m2−5m=0.4(m^2 - 2m + 1) - 2m^2 + 2m + 8 - 2[4(m^2 - 2m + 1) - 2m^2 + 2m + 8] + 4x_2 + m^2 - 5m = 0.4(m2−2m+1)−2m2+2m+8−2[4(m2−2m+1)−2m2+2m+8]+4x2+m2−5m=0.
Sau khi tiếp tục biến đổi và rút gọn, ta giải phương trình để tìm các giá trị mmm thỏa mãn.
Kết quả cuối cùng là m=3m = 3m=3 (thỏa mãn cả hai điều kiện trên).