![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2-6x+10>x^2-6x+9=\left(x-3\right)^2>0\\ \Rightarrow x^2-6x+10>0\)
b)\(4x^2-20x+27>4x^2-20x+25=\left(2x+5\right)^2\ge0\\ \Rightarrow4x^2-20x+27>0\)
c)\(x^2+x+1>x^2\ge0\)
d)\(x^2+4x+y^2+6y+15=\left(x+2\right)^2+\left(y+3\right)^2+2\\ \left(x+2\right)^2\ge0;\left(y+3\right)^2\ge0;\\ \Rightarrow x^2+4x+y^2+6y+15\ge2>0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) \(x^2+4x+5=x^2+2.x.2+2^2+1=\left(x+2\right)^2+1\)
\(Do\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\left(đpcm\right)\)
b) \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(Do\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\left(đpcm\right)\)
c)\(-\left(4x^2-12x+9\right)-1=-\left(2x-3\right)^2-1\)
\(Do-\left(2x-3\right)\le0\Rightarrow-\left(2x-3\right)-1\le-1\forall x\)
\(x^2+2.x.2+2^2+5-4\) \(\Rightarrow\left(x+2\right)^2+5-4\) \(\Rightarrow\left(x+2\right)^2+1\)
vì \(\left(x+2\right)^2\ge0\) \(\Rightarrow\left(x+2\right)^2+1\ge1\) \(\ge0\) \(\Rightarrow dpcm\)
b) \(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\) \(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)
vì \(\left(x+\frac{1}{2}\right)^2\ge0\) \(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\ge0\) \(\Rightarrow dpcm\)
c) \(12x-4x^2-10=-\left(4x^2-12x+10\right)\) = \(\left[\left(2x\right)^2-2.2x.3+3^2\right]+10-3^2\)
\(\Rightarrow\left(2x-3\right)^2+10-9\) \(\Rightarrow\left(2x-3\right)^2+1\) vì \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+1\ge1hay\ge0\left(1>0\right)\Rightarrow dpcm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để 4x(x - 3) > 0
Th1 : \(\hept{\begin{cases}4x>0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>3\end{cases}\Rightarrow}x>3}\)
Th2 : \(\hept{\begin{cases}4x< 0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x< 3\end{cases}\Rightarrow}x< 3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x>0\\x+4>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0\\x>-4\end{cases}\Leftrightarrow}x>0}\)
\(\Leftrightarrow\orbr{\begin{cases}x< 0\\x+4< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 0\\x< -4\end{cases}\Leftrightarrow}x< -4}\)
vậy...........
Bài làm:
Ta có: \(x^2+4x>0\)
\(\Leftrightarrow x\left(x+4\right)>0\)
Ta thấy \(x< x+4\) nên => \(\orbr{\begin{cases}x>0\\x+4< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)
Vậy \(x>0\) hoặc \(x< -4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lớn hơn thì nhân tử cùng dấu
Nhỏ hơn thì nhân tử trái dấu
=> Xét hai trường hợp
a, Xét x+2>0
2x-5>0
Giải ra x b , c tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
a: x+1>0
=>x>-1
b: -2x-3<0
=>-2x<3
=>x>-3/2
c: 4x+5>0
=>4x>-5
=>x>-5/4
d: -7x-3<0
=>-7x<3
=>x>-3/7
k: 3x+7>0
=>3x>-7
=>x>-7/3
l: -4x-1<0
=>-4x<1
=>x>-1/4
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+4x>0\)
\(x\left(x+4\right)>0\)
\(\Rightarrow\hept{\begin{cases}x>0\\x>-4\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x< -4\end{cases}}\)
=> x > 0 và x < -4
Vậy : -4 > x > 0
=.= hk tốt!!
ta có x2 + 4x > 0
<=> x(x + 4 ) >0
<=> \(\orbr{\begin{cases}x>0\\x+4>0\end{cases}}\)<=> \(\orbr{\begin{cases}x>0\left(Nhận\right)\\x>4\left(Loại\right)\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có:x2+4x>0
=>xx+4x>0
=>x(4+x)>0
=>x và 4+x cùng dấu
+)th1:x và 4+x<0
=>x<-4 (1)
+)th2:x và 4+x lớn hơn bằng0
=>x lớn hơn bằng 0 (2)
từ (1) và (2) =>x thuộc {...,-6,-5,0,1,2,...}
\(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) <=> x và x+4 cùng dấu
\(\left(+\right)x>0;x+4>0\Rightarrow x>0;x>-4\Rightarrow x>0\)
\(\left(+\right)x< 0;x+4< 0\Rightarrow x< 0;x< -4\Rightarrow x< -4\)
Vậy x>0 hoặc x<-4 thì.................