Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>0,2-x=7
=>x=-6,8
b: =>x=6 hoặc x=-6
c: =>x^2=5
hay \(x=\pm\sqrt{5}\)
d: =>x^2=2
hay \(x=\pm\sqrt{2}\)
e: =>x-1=2 hoặc x-1=-2
=>x=-1 hoặc x=3
f: =>2x+1=7 hoặc 2x+1=-7
=>2x=-8 hoặc 2x=6
=>x=3 hoặc x=-4
a) Ta có: \(x^4=64\)
\(\Leftrightarrow\) \(x^2=\sqrt{64}=8\)
\(\Leftrightarrow\) \(x=2\sqrt{2}\)
\(\Leftrightarrow\) \(x\approx2.83\)
b) Ta có: \(x-\sqrt{x}=0\) (ĐKXĐ: \(x\ge0\) )
\(\Leftrightarrow\) \(\left(\sqrt{x}\right)^2-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\sqrt{x}=0\) hoặc \(\sqrt{x}-1=0\)
\(\Leftrightarrow\) \(x=0\) \(\Leftrightarrow\) \(\sqrt{x}=1\)
(thỏa mãn ĐKXĐ) \(\Leftrightarrow\) \(x=1\) (thỏa mãn ĐKXĐ)
c) Ta có: \(2x-3\sqrt{x}=0\) (ĐKXĐ: \(x\ge0\) )
\(\Leftrightarrow\) \(2\left(\sqrt{x}\right)^2-3\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(2\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\) \(\sqrt{x}=0\) hoặc \(2\sqrt{x}-3=0\)
\(\Leftrightarrow\) \(x=0\) \(\Leftrightarrow\) \(2\sqrt{x}=3\)
(thỏa mãn ĐKXĐ) \(\Leftrightarrow\) \(\sqrt{x}=\dfrac{3}{2}=1.5\) (thỏa mãn ĐKXĐ)
NOTE: A giải theo cách của lớp 9 nên có cái j ko hiểu cứ nói a. E mà làm theo cách của a là bị nói là sai đó.
a: =>1/6x=-49/60
=>x=-49/60:1/6=-49/60*6=-49/10
b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2
=>x=17/15 hoặc x=-13/15
c: =>1,25-4/5x=-5
=>4/5x=1,25+5=6,25
=>x=125/16
d: =>2^x*17=544
=>2^x=32
=>x=5
i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5
=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2
=>x=14,4 hoặc x=9,6
j: =>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
Bài 1:\(3^{x+2}-3^x=24\Rightarrow3^x.3^2-3^x=24\Rightarrow3^x.\left(3^2-1\right)=24\Rightarrow3^x.8=24\Rightarrow3^x=3\Rightarrow x=1\)
Bài 2:a,Chọn đáp án C.x0=1
b,Chọn đáp án D\(-\sqrt{2}+\sqrt{5}\) vì \(\sqrt{5}>\sqrt{2}\Rightarrow\left|\sqrt{2}-\sqrt{5}\right|=-\left(\sqrt{2}-\sqrt{5}\right)\)
a) Ta có : \(\hept{\begin{cases}\left|\frac{x}{3}-1\right|\ge0\\\left(2x-6\right)^2\ge0\\\sqrt{x-3}\ge0\end{cases}}\)
Mà \(\left|\frac{x}{3}-1\right|+\left(2x-6\right)^2+\sqrt{x-3}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}-1=0\\2x-6=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\x=3\\x=3\end{cases}\Leftrightarrow}x=3}\)
Vậy x = 3
b) \(2\times\sqrt{x}-3=4\)
\(\Leftrightarrow2\times\sqrt{x}=7\)
\(\Leftrightarrow\sqrt{x}=\frac{7}{2}\)
\(\Leftrightarrow x=\frac{49}{4}\)
BÀi 2:
Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)
a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)
b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)
c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)
d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)
b)Vì BCNN(3;5) = 15
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy...
c)Vì BCNN(2;3;5) = 30
\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
WTFFFFFF>>>
d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính
e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)
Vậy...
Ta có : \(\left(x^2-4\right).\sqrt{x}=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\\sqrt{x=0}\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\x=2\\x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\left(-2\right)^2-4\right).\sqrt{-2}=0\\\left(2^2-4\right).\sqrt{2}=0\\\left(0^2-4\right).\sqrt{0}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(\left(-2\right)^2-4\right).\sqrt{-2}=0\\0=0\\0=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\ne-2\\x=2\\x=0\end{cases}}\)
Vậy \(x_1=0;x_2=2\)
\(\left(x^2-4\right)\sqrt{x}=0\)
\(Th1:x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x^2=2^2\)
\(\Leftrightarrow x=\pm2\)
\(Th2:\sqrt{x}=0\Leftrightarrow x=0\)