K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 giờ trước (8:40)

Ta có:Nếu y>0 thì 3^y chia hết cho 3,mà 35 chia 3 dư 2 nên vế phải chia 3 dư 2

Mà vế trái là số chính phương nên vế trái chỉ chia 3 dư 1 hoặc 0

Suy ra mâu thuẫn

Do đó y<=0,mà y là số nguyên ko âm nên y=0

Suy ra x=6

NM
14 tháng 8 2021

1.\(x^{16}-y^{16}=\left(x^8-y^8\right)\left(x^8+y^8\right)\)

2.\(x^3-125=x^3-5^3=\left(x-5\right)\left(x^2+5x+25\right)\)

\(-64+\frac{1}{8}x^3=\left(\frac{x}{2}\right)^3-4^3=\left(\frac{x}{2}-4\right)\left(\frac{x^2}{4}+2x+16\right)\)

\(8x^3+60x^2y+150xy^2+125y^3=\left(2x\right)^3+3.\left(2x\right)^2.\left(5y\right)+3.\left(2x\right).\left(5y\right)^2+\left(5y\right)^3\)

\(=\left(2x+5y\right)^3\)

14 tháng 8 2021

cám ơn bn Nguyễn Minh Quang nhé

31 tháng 8 2018

a)  \(x^2-6x+9=\left(x-3\right)^2\)

b)  \(x^2+8x+16=\left(x+4\right)^2\)

c)   \(\left(x-3\right)^2-16=\left(x-3-4\right)\left(x-3+4\right)=\left(x-7\right)\left(x+1\right)\)

d)  \(64+16x+x^2=\left(x+8\right)^2\)

e) \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)

f) mk chỉnh đề

 \(8-36x+54x^2-27x^3=\left(2-3x\right)^3\)

g)  \(8x^3+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)

25 tháng 1 2018

mọi người giúp mình với mình cần gấp lắm

18 tháng 11 2018

toàn bài cơ bản nha bn, kb vs mik thì mik sẽ giải giúp

18 tháng 11 2018

a/\(x^2-y^2-4x+4\)

\(=\left(x^2-4x+4\right)-y^2\)

\(=\left(x-2\right)^2-y^2\)

\(\left(x-2+y\right)\left(x-2-y\right)\)

P/S : các bài khác tương tự dạng thoy ạ =( cùng phân hs vs hằng đẳng thức

27 tháng 10 2021

helpppppp

2 tháng 12 2017

a) (2x^2 +2xy - xy -y^2 ) / (2x^2 - 2xy - xy +y^2)

= 2x(x+y) - y(x+y)  /  2x(x-y) - y(x-y)

= (2x-y)(x+y)  /  (2x-y)(x-y)

= x+y/x-y

14 tháng 4 2020

Rút gọn cái sau:

\(\frac{32x+4x^2+2x^3}{x^3+64}\)

\(=\frac{2x\left(x^2+2x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}\)

Đề có vẻ sai sai ? 

8 tháng 8 2019

1) \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow\)\(2x^2+2y^2\ge x^2+2xy+y^2\)\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

2) \(\frac{1}{xy}=\frac{1}{\left(\sqrt{xy}\right)^2}\ge\frac{1}{\left(\frac{x+y}{2}\right)^2}=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)

9 tháng 8 2019

bạn Diệu Linh ơi, bài này bảo chứng minh điều đó là đúng chứ không bảo điều đó là giả thiết nhé bạn, nhưng cũng cảm ơn bạn vì đã giúp mình =))

28 tháng 2 2020

a) Giả sử \(x+y\) là số nguyên tố

Ta có : \(x^3-y^3⋮x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)⋮x+y\)

\(\Rightarrow x^2+xy+y^2⋮x+y\) ( Do \(x-y< x+y,\left(x-y,x+y\right)=1\) vì \(x+y\) là số nguyên tố )

\(\Rightarrow x^2⋮x+y\) ( Do \(xy+y^2=y\left(x+y\right)⋮x+y\) )

\(\Rightarrow x⋮x+y\) (1)

Mặt khác \(x< x+y,x+y\) là số nguyên tố

\(\Rightarrow x⋮̸x+y\) mâu thuẫn với (1)

Do đó, điều giả sử sai.

Vậy ta có điều phải chứng minh.

28 tháng 2 2020

Bạn thì nhanh nhờ

Del rep cho