\(x^2-3x+\sqrt{x^2-3x+2}=10\)
  • \(3\sqrt{x^2-5x+10}=5x-x^...">
    K
    Khách

    Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

    6 tháng 12 2016

    Bài 1:

    Đk:\(1\le x\le2\)

    \(pt\Leftrightarrow x^2-3x-10=-\sqrt{x^2-3x+2}\)

    Đặt \(\sqrt{x^2-3x+2}=t\left(t\ge0\right)\) ta có:

    \(t^2-12=-t\Leftrightarrow t^2+t-12=0\)\(\Leftrightarrow\left(t+4\right)\left(t-3\right)=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-4\left(loai\right)\\t=3\end{array}\right.\)

    Xét \(t=3\Leftrightarrow x^2-3x+2=3\)

    \(\Leftrightarrow x^2-3x-1=0\)

    \(\Delta=\left(-3\right)^2-\left[\left(-4\right).\left(1.1\right)\right]=13\)\(\Leftrightarrow x_{1,2}=\frac{3\pm\sqrt{13}}{2}\) (thỏa mãn)

    6 tháng 12 2016

    các phần khác tương tự

    NV
    22 tháng 10 2019

    a/ ĐKXĐ: \(0\le x\le4\)

    \(\left(x^2-4x\right)\sqrt{-x^2+4x}+x^2-4x+2=0\)

    Đặt \(\sqrt{-x^2+4x}=a\ge0\)

    \(-a^2.a-a^2+2=0\)

    \(\Leftrightarrow a^3+a^2-2=0\)

    \(\Leftrightarrow\left(a-1\right)\left(a^2+2a+2\right)=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}a=1\\a^2+2a+2=0\left(vn\right)\end{matrix}\right.\)

    \(\Rightarrow\sqrt{-x^2+4x}=1\Leftrightarrow x^2-4x+1=0\Rightarrow...\)

    b/ \(x^4+2x^2+x\sqrt{2x^2+4}-4=0\)

    Đặt \(x\sqrt{2x^2+4}=a\Rightarrow x^2\left(2x^2+4\right)=a^2\Rightarrow x^4+2x^2=\frac{a^2}{2}\)

    \(\frac{a^2}{2}+a-4=0\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\end{matrix}\right.\)

    \(\Rightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4}=2\left(x>0\right)\\x\sqrt{2x^2+4}=-4\left(x< 0\right)\end{matrix}\right.\)

    \(\Leftrightarrow\left[{}\begin{matrix}2x^4+4x^2=4\\2x^4+4x^2=16\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=\sqrt{3}-1\\x^2=-\sqrt{3}-1\left(l\right)\\x^2=2\\x^2=-4\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{3}-1}\\x=-\sqrt{2}\end{matrix}\right.\)

    NV
    22 tháng 10 2019

    c/ Đặt \(\sqrt[3]{2x^2+3x-10}=a\Rightarrow2x^2+3x=a^3+10\)

    \(a^3+10-14=2a\)

    \(\Leftrightarrow a^3-2a-4=0\)

    \(\Leftrightarrow\left(a-2\right)\left(a^2+2a+2\right)=0\Rightarrow a=2\)

    \(\Rightarrow\sqrt[3]{2x^2+3x-10}=2\Rightarrow2x^2+3x-18=0\Rightarrow...\)

    d/ \(\Leftrightarrow2\left(3x^2+x+4\right)+\sqrt[3]{3x^2+x+4}-18=0\)

    Đặt \(\sqrt[3]{3x^2+x+4}=a\)

    \(2a^3+a-18=0\)

    \(\Leftrightarrow\left(a-2\right)\left(2a^2+4a+9\right)=0\Rightarrow a=2\)

    \(\Rightarrow\sqrt[3]{3x^2+x+4}=2\Rightarrow3x^2+x-4=0\Rightarrow...\)

    e/ \(\Leftrightarrow x^2+5x+2-3\sqrt{x^2+5x+2}-2=0\)

    Đặt \(\sqrt{x^2+5x+2}=a\ge0\)

    \(a^2-3a-2=0\Rightarrow\left[{}\begin{matrix}a=\frac{3+\sqrt{17}}{2}\\a=\frac{3-\sqrt{17}}{2}\left(l\right)\end{matrix}\right.\)

    \(\Rightarrow\sqrt{x^2+5x+2}=\frac{3+\sqrt{17}}{2}\Rightarrow x^2+5x-\frac{9+3\sqrt{17}}{2}=0\)

    Bài cuối xấu quá, chắc nhầm số liệu

    NV
    16 tháng 2 2020

    1/ Đặt \(\sqrt[3]{x^2+5x-2}=t\Rightarrow x^2+5x=t^3+2\)

    \(t^3+2=2t-2\)

    \(\Leftrightarrow t^3-2t+4=0\)

    \(\Leftrightarrow\left(t+2\right)\left(t^2-2t+2\right)=0\)

    \(\Rightarrow t=-2\)

    \(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\)

    \(\Leftrightarrow x^2+5x-2=-8\)

    \(\Leftrightarrow x^2+5x+6=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

    NV
    16 tháng 2 2020

    2/ \(\Leftrightarrow2x+11+3\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=2x+11\)

    \(\Leftrightarrow\sqrt[3]{\left(x+5\right)\left(x+6\right)}\left(\sqrt[3]{x+5}+\sqrt[3]{x+6}\right)=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}\sqrt[3]{x+5}=0\\\sqrt[3]{x+6}=0\\\sqrt[3]{x+5}=-\sqrt[3]{x+6}\end{matrix}\right.\)

    \(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x+5=-x-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-5\\x=-6\\x=-\frac{11}{2}\end{matrix}\right.\)

    1. \(x^3-x^2+12x\sqrt{x-1}+20=0\) 2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\) 3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\) 4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\) 5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\) 6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\) 7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\) 8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\) 9. \(x^2+6x+8=3\sqrt{x+2}\) 10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\) 11. ...
    Đọc tiếp

    1. \(x^3-x^2+12x\sqrt{x-1}+20=0\)

    2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\)

    3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)

    4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\)

    5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\)

    6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\)

    7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\)

    8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)

    9. \(x^2+6x+8=3\sqrt{x+2}\)

    10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\)

    11. \(\sqrt{x+1}+\sqrt{4-x}-\sqrt{\left(x+1\right)\left(4-x\right)}=1\)

    12. \(x^2-\sqrt{x^2-4x}=4\left(x+3\right)\)

    13. \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

    14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\)

    15. \(\sqrt{2x^2+3x+2}+\sqrt{4x^2+6x+21}=11\)

    16. \(\sqrt{x+3+3\sqrt{2x-3}}+\sqrt{x-1+\sqrt{2x-1}}=2\sqrt{2}\)

    17. \(\left(x-2\right)^2\left(x-1\right)\left(x-3\right)=12\)

    18. \(2x^2+\sqrt{x^2-2x-19}=4x+74\)

    19. \(x^4+x^2-20=0\)

    20. \(x+\sqrt{4-x^2}=2+3x\sqrt{4-x^2}\)

    21. \(\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1\right)=9\)

    22. \(\sqrt{x^2-3x+5}+x^2=3x+7\)

    23. \(x^2+6x+5=\sqrt{x+7}\)

    24. \(\frac{2x^2-3x+10}{x+2}=3\sqrt{\frac{x^2-2x+4}{x+2}}\)

    25. \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\)

    26. \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)

    27. \(\sqrt{x-1}+\sqrt{5-x}-2=2\sqrt{\left(x-1\right)\left(5-x\right)}\)

    28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\)

    29. \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)

    30. \(\frac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\frac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)

    12
    20 tháng 3 2020

    28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)

    PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)

    Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)

    giai tiep

    20 tháng 3 2020

    14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

    PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)

    \(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)

    NV
    22 tháng 10 2019

    a/ \(\Leftrightarrow x^2+5x-2-2\sqrt[3]{x^2+5x-2}+4=0\)

    Đặt \(\sqrt[3]{x^2+5x-2}=a\)

    \(a^3-2a+4=0\)

    \(\Leftrightarrow\left(a+2\right)\left(a^2-2a+2\right)=0\Rightarrow a=-2\)

    \(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\Rightarrow x^2+5x+6=0\Rightarrow...\)

    b/ ĐKXĐ:...

    \(\Leftrightarrow-3\left(-x^2+4x+10\right)-5\sqrt{-x^2+4x+10}+42=0\)

    Đặt \(\sqrt{-x^2+4x+10}=a\ge0\)

    \(-3a^2-5a+42=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{14}{3}\left(l\right)\end{matrix}\right.\)

    \(\Rightarrow\sqrt{x^2+4x+10}=3\Rightarrow x^2-4x-1=0\Rightarrow...\)

    NV
    22 tháng 10 2019

    c/ ĐKXĐ: ...

    \(\Leftrightarrow x^2+3x+3\sqrt{x^2+3x}-10=0\)

    Đặt \(\sqrt{x^2+3x}=a\ge0\)

    \(a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)

    \(\Rightarrow\sqrt{x^2+3x}=2\Rightarrow x^2+3x-4=0\)

    d/ ĐKXĐ: \(-1\le x\le2\)

    \(\Leftrightarrow\sqrt{3-x+x^2}=1+\sqrt{2+x-x^2}\)

    \(\Leftrightarrow3-x+x^2=3+x-x^2+2\sqrt{2+x-x^2}\)

    \(\Leftrightarrow2+x-x^2+\sqrt{2+x-x^2}-2=0\)

    Đặt \(\sqrt{2+x-x^2}=a\ge0\)

    \(a^2+a-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)

    \(\Rightarrow\sqrt{2+x-x^2}=1\Leftrightarrow x^2-x-1=0\)

    e/ \(\Leftrightarrow\sqrt{x^2-3x+3}-1+\sqrt{x^2-3x+6}-2=0\)

    \(\Leftrightarrow\frac{x^2-3x+2}{\sqrt{x^2-3x+3}+1}+\frac{x^2-3x+2}{\sqrt{x^2-3x+6}+2}=0\)

    \(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{\sqrt{x^2-3x+3}+1}+\frac{1}{\sqrt{x^2-3x+6}+2}\right)=0\)

    \(\Leftrightarrow x^2-3x+2=0\)

    NV
    14 tháng 3 2020

    1.

    \(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)

    Vậy:

    \(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)

    \(f\left(x\right)=0\Rightarrow x=7\)

    \(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)

    \(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)

    2.

    \(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)

    Vậy:

    \(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)

    \(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)

    \(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)

    NV
    14 tháng 3 2020

    3.

    \(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)

    Vậy:

    \(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)

    \(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)

    \(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)

    \(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)

    4.

    \(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)

    Vậy:

    \(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)

    \(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)

    \(f\left(x\right)< 0\Rightarrow-6< x< 2\)

    3 tháng 12 2017

    a) \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)

    đặt t \(=\sqrt{1+x}-\sqrt{8-x}\)

    \(\Leftrightarrow t^2=1+x-2\sqrt{\left(1+x\right)\left(8-x\right)}+8-x\)

    \(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{9-t^2}{2}\)

    pt \(\Rightarrow t+\dfrac{9-t^2}{2}=3\)

    \(\Leftrightarrow t^2-2t-3=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)

    \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}-\sqrt{8-x}=-1\\\sqrt{1+x}-\sqrt{8+x}=3\end{matrix}\right.\)

    suy ra tìm đc x

    3 tháng 12 2017

    câu b đặt t =\(3x^2+5x+8\)

    ta có pt \(\Leftrightarrow\sqrt{t}-\sqrt{t-7}=1\)

    \(\Rightarrow t=16\)

    \(\Leftrightarrow3x^2+5x+8=16\)

    \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{8}{3}\end{matrix}\right.\)

    NV
    13 tháng 4 2020

    ĐKXĐ: \(x\ge\frac{1}{5}\)

    \(\Leftrightarrow x^2-x+\left(2x+9\right)\left(\sqrt{x+3}-2\right)+2\left(2x-\sqrt{5x-1}\right)=0\)

    \(\Leftrightarrow x\left(x-1\right)+\frac{\left(2x+9\right)\left(x-1\right)}{\sqrt{x+3}+2}+\frac{2\left(x-1\right)\left(4x-1\right)}{2x+\sqrt{5x-1}}=0\)

    \(\Leftrightarrow\left(x-1\right)\left[x+\frac{2x+9}{\sqrt{x+3}+2}+\frac{4x-1}{2x+\sqrt{5x-1}}\right]=0\)

    \(\Leftrightarrow x=1\)