Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 - 3x + 2)(x2 - 9x + 20) = 40
=> (x - 2)(x - 1)(x - 4)(x - 5) = 40
=> (x - 2)(x - 4)(x - 1)(x - 5) = 40
=> (x2 - 6x + 8)(x2 - 6x + 5) = 40
Đặt x2 - 6x + 5 = a , pt trở thành:
(a + 3).a = 40 => a2 + 3a - 40 = 0 => (a + 8)(a - 5) = 0 => a = -8 hoặc a = 5
+) Với a = -8 => x2 - 6x + 5 = -8 => x2 - 6x + 13 = 0 , mà x2 - 6x + 13 > 0 => vô nghiệm
+) Với a = 5 => x2 - 6x + 5 = 5 => x2 - 6x = 0 => x(x - 6) = 0 => x = 0 hoặc x = 6
Vậy x = 0, x = 6
\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)
d: \(\Leftrightarrow3x^2-6x-2x+4=0\)
=>(x-2)(3x-2)=0
=>x=2 hoặc x=2/3
e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)
=>x(x-3)(x+1)=0
hay \(x\in\left\{0;3;-1\right\}\)
f: \(\Leftrightarrow x^2-5x-2+x=0\)
\(\Leftrightarrow x^2-4x-2=0\)
\(\Leftrightarrow\left(x-2\right)^2=6\)
hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)
<=>\(\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-5\right)-40=0\)<=> (x2-6x+5) (x2-6x+8) -40=0 <=> (x2-6x+5)2+3(x2-6x+5)-40=0
<=> (x2-6x+5)2+2.3/2(x2-6x+5)+9/4-9/4-40=0
<=> (x2-6x+5+3/2)2 -169/4=0
đến bước này là thành hàng đẳng thức thứ 3 rồi. rất đơn giản, vì 169/4 là 13^2 phần 2^2
bạn chỉ cần đặt mỗi vế tích bằng không rồi tìm x là ra luôn nhé :))
x=0, x=6; x = 3-2*i;x = 2*i+3;