Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 - 3x + 2)(x2 - 9x + 20) = 40
=> (x - 2)(x - 1)(x - 4)(x - 5) = 40
=> (x - 2)(x - 4)(x - 1)(x - 5) = 40
=> (x2 - 6x + 8)(x2 - 6x + 5) = 40
Đặt x2 - 6x + 5 = a , pt trở thành:
(a + 3).a = 40 => a2 + 3a - 40 = 0 => (a + 8)(a - 5) = 0 => a = -8 hoặc a = 5
+) Với a = -8 => x2 - 6x + 5 = -8 => x2 - 6x + 13 = 0 , mà x2 - 6x + 13 > 0 => vô nghiệm
+) Với a = 5 => x2 - 6x + 5 = 5 => x2 - 6x = 0 => x(x - 6) = 0 => x = 0 hoặc x = 6
Vậy x = 0, x = 6
2x^4-9x^3+14x^2-9x+2=0
vế trái có tổng các hệ số (2-9+14-9+2)=0 nến có 1 nghiêm x=1
nên phân tích đc nhân tử là (x-1)
2x^4-9x^3+14x^2-9x+2=0 <=> (x-1)(2x^3-7x^2+7x-2)=0
<=> x=1 và 2x^3-7x^2+7x-2=0
PT: 2x^3-7x^2+7x-2=0 cũng có tổng các hệ số (2-7+7-2)=0 nên cũng có 1 nghiệm là 1 => vế trái có thể phân tích đc nhân tử (x-1)
2x^3-7x^2+7x-2=0 <=> (x-1)(2x^2-5x+2)=0
<=> x=1 và 2x^2-5x+2=0
2x^2-5x+2=0 <=> x^2 - (5/2)x + 1 =0
<=> (x-5/4)^2 - 9/16 = 0
<=> (x-5/4)^2 - (3/4)^2 = 0
<=>\(\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-5\right)-40=0\)<=> (x2-6x+5) (x2-6x+8) -40=0 <=> (x2-6x+5)2+3(x2-6x+5)-40=0
<=> (x2-6x+5)2+2.3/2(x2-6x+5)+9/4-9/4-40=0
<=> (x2-6x+5+3/2)2 -169/4=0
đến bước này là thành hàng đẳng thức thứ 3 rồi. rất đơn giản, vì 169/4 là 13^2 phần 2^2
bạn chỉ cần đặt mỗi vế tích bằng không rồi tìm x là ra luôn nhé :))
(x2-3x+2)(x2-9x+20)=40
=>x=0 hoặc 6