x^2 - 3x + 9 = -xy + 2y

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2024

giai phuong trinh nghiem nguyen

 

25 tháng 6 2024

\(x^2-3x+9=-xy+2y\)

\(\Rightarrow x^2-3x+xy-2y=-9\)

\(\Rightarrow\left(x^2+xy\right)-\left(2x+2y\right)-x=-9\)

\(\Rightarrow x\left(x+y\right)-2\left(x+y\right)-x=-9\)

\(\Rightarrow\left(x-2\right)\left(x+y\right)-x=-9\)

\(\Rightarrow\left(x-2\right)\left(x+y\right)-\left(x-2\right)=-7\)

\(\Rightarrow\left(x-2\right)\left(x+y-1\right)=-7\) (1)

Vì x và y nguyên nên (x-2) và (x+y-1) cũng nguyên (2)

Từ (1)  (2) suy ra:

\(\left(x-2\right);\left(x+y-1\right)\inƯ\left(-7\right)=\left\{\text{±}1;\text{±}7\right\}\)

Sau đó thì bạn lập bảng và kết luận nhé!

 

25 tháng 7 2021

a, mình nghĩ đề là cm đẳng thức nhé 

\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)

Vậy ta có đpcm 

b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)

\(=-5y-9+xy=VP\)

Vậy ta có đpcm 

c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)

Vậy ta có đpcm 

6 tháng 10 2017

Bạn nhân 2 cả 3 câu rồi phân tích ra hằng đẳng thức là được

18 tháng 1 2019

a){x^2} + {y^2} + xy + 3x - 3y + 9 = 0

2{x^2} + 2{y^2} + 2xy + 6x - 6y + 18 = 0

({x^2} + 2xy + {y^2}) + ({x^2} + 6x + 9) + ({y^2} - 6y + 9) = 0

{(x + y)^2} + {(x + 3)^2} + {(y - 3)^2} = 0

\Rightarrow x + y = 0;x + 3 = 0;y - 3 = 0

\Rightarrow x =  - 3;y = 3

b ) x2 - 4x - 2y + xy + 1 = 0

( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0

( x - 2 )2 - y ( 2 - x ) = 3

( 2 - x ) ( 2 - x - y ) = 3

đến đây lập bảng tìm ra x,y

18 tháng 1 2019

a) x2 + y2 + xy + 3x - 3y + 9 = 0

2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0

( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0

( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0

\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0

\(\Rightarrow\)x = -3 ; y = 3

a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)

b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)

c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)

 

23 tháng 9 2018

\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)

\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)

\(=y^2-2x^2y^3\)

\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)

\(=6x-y+2x^2+3y-2+x\)

\(=2x^2+7x+2y-2\)

\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)

\(=x-y+4y^2-6xy+10x^2\)

23 tháng 9 2018

Oa, giờ mới biết bác cũng ở box Toán :))

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

2 tháng 9 2020

\(ĐKXĐ:x\ne y,x\ne0,y\ne0\)

Ta có : \(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)

\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}=\frac{-2xy.\left(x-y\right)}{xy.\left(x-y\right)}=-2\)

2 tháng 9 2020

\(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y}{xy\left(x-y\right)}+\frac{-\left(3x^2y+xy^2\right)}{xy.\left(x-y\right)}\)

\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)

\(=\frac{\left(3xy^2-3x^2y\right)+\left(x^2y-xy^2\right)}{xy.\left(x-y\right)}\)

\(=\frac{3xy.\left(y-x\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)

\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)

\(=\frac{\left(x-y\right).\left(-3xy+xy\right)}{xy.\left(x-y\right)}\)

\(=\frac{-3xy+xy}{xy}\)

\(=\frac{-2xy}{xy}\)

\(=-2.\)