
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(C=x^2\left(x^2+x+1\right)-2x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-2x+3\right)\)


\(-\sqrt{x}+x-2\)
\(=x-\sqrt{x}-2=x+\sqrt{x}-2\sqrt{x}-2\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)\)
\(=\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)

\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)
\(=2x^2-2x\sqrt{x+3}-x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)
\(=2x\left(x-\sqrt{x+3}\right)-\sqrt{x+3}\left(x-\sqrt{x+3}\right)\)
\(=\left(2x-\sqrt{x+3}\right)\left(x-\sqrt{x+3}\right)\)
\(2x^2-3x\sqrt{x+3}+\left(x+3\right)\)
\(=2x^2-x\sqrt{x+3}-2x\sqrt{x+3}+\left(\sqrt{x+3}\right)^2\)
\(=x\left(2x-\sqrt{x+3}\right)-\sqrt{x+3}\left(2x-\sqrt{x+3}\right)\)
\(=\left(x-\sqrt{x+3}\right)\left(2x-\sqrt{x+3}\right)\)

\(\sqrt{x^3}-1=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right).\)

Ta có : \(M=7\sqrt{x-1}-\sqrt{x^3-x^2}+x-1\)
\(=7\sqrt{x-1}-\sqrt{x^2\left(x-1\right)}+x-1\)
\(=7\sqrt{x-1}-x\sqrt{x-1}+\left(\sqrt{x-1}\right)^2\)
\(=\sqrt{x-1}\left(7-x+\sqrt{x-1}\right)\)
\(=\sqrt{x-1}\left(\sqrt{x-1}+2\right)\left(\sqrt{x-1}-3\right)\)

\(M=7\sqrt{x-1}-\sqrt{x^2\left(x-1\right)}+\left(\sqrt{x-1}\right)^2=\sqrt{x-1}\left(7-x+\sqrt{x-1}\right)\)
\(=\sqrt{x-1}\left(6-\left(x-1\right)+\sqrt{x-1}\right)\)( đến đây bạn có thể đặt \(\sqrt{x-1}=t\),t>=0 rồi giải)
\(=-\sqrt{x-1}\left(\sqrt{x-1}-3\right)\left(\sqrt{x-1}+2\right)\)
chac la phan tich da thuc thanh phan tu