Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(x^2+4y^2+z^2=2x+12y-4z-14\)
\(\Leftrightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(2y-3\right)^2\ge0\\\left(z+2\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-3=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
b. \(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)
\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(x^2-2x+1+\left(\sqrt{3}y\right)^2+2.6.y+\left(2\sqrt{3}\right)^2+\left(\sqrt{2}z\right)^2+2.2.z+\left(\sqrt{2}\right)^2=0\)
\(\left(x-1\right)^2+\left(\sqrt{3}y+2\sqrt{3}\right)^2+\left(\sqrt{2}z+\sqrt{2}\right)^2=0\)
\(\Rightarrow x=1;y=-2;z=-1\)
<=>(x2-2x+1)+(3y2+12y+12)+(2z2+4z+2)=0
<=>(x-1)2+3(y+2)2+2(z+1)2=0
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\3\left(y+2\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{cases}\Rightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2\ge0}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=-1\end{cases}}}\)
a) = (x2 - 2xy +y2) + (x2 +x +2)
=(x-y)2 + (x+1/2)2 +7/4 >0 với mọi x,y
=> không tồn tại các số x,y thỏa mãn hằng đẳng thức đã cho.
b) = (x2-2x+1)+(9y2+12y+4)+(4z2-4z+1) + 14=(x-1)2+(3y+2)2+(2z+1)2+14>0 với mọi x,y ,z
=> không tồn tại giá trị x,y,z thỏa mãn đẳng thức đã cho
\(x=\frac{4}{1+4}=\frac{4}{5}=0,8\) \(z=\frac{4}{1+4}=\frac{4}{5}=0,8\)
\(y=\frac{4}{1+4}=\frac{4}{5}=0,8\)
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
\(\Rightarrow\left(5x-3y\right)^2-\left(4z\right)^2=\left(3x-5y\right)^2\)
\(\Rightarrow\left(5x-3y\right)-16z^2-\left(3x-5y\right)^2=0\)
\(\Rightarrow25x^2-30xy+9y^2-16z^2-\left(9x^2-30xy+25y^2\right)=0\)
\(\Rightarrow25x^2-30xy+9y^2-16z^2-9x^2+30xy-25y^2=0\)
\(\Rightarrow25\left(x^2-y^2\right)+9\left(x^2-y^2\right)-16z^2=0\)
\(\Rightarrow34\left(x^2-y^2\right)-16z^2=0\)
Ta có \(x^2-y^2-z^2=0\Rightarrow z^2=x^2-y^2\)
Có \(VT=\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-\left(4z\right)^2\)\(=\left(5x-3y\right)^2-16z^2=\left(5x-3y\right)^2-16\left(x^2-y^2\right)\)
\(=25x^2-30xy+9y^2-16x^2+16y^2=9x^2-30xy+25y^2\)
\(=\left(3x\right)^2-2.3x.5y+\left(5y\right)^2=\left(3x-5y\right)^2=VP\left(đpcm\right)\)
\(x^2-2x+y^2+4y+4z^2-4z+6=0\)
\(x^2-2x+1+y^2+4y+4+4z^2-4z+1=0\)
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(2z-1\right)^2=0\)
\(x-1=y-2=2z-1=0\)
\(\left[\begin{array}{nghiempt}x=1\\y=2\\z=\frac{1}{2}\end{array}\right.\)