Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=x\left(x^2+2x+1-y^2\right)=x\left[\left(x+1\right)^2-y^2\right]=x\left(x+y+1\right)\left(x-y+1\right)\)
a) (-x+5)(x+3)
b) x2-y2+x2-xy
(x-y)(x+y)+x(x-y)
(x-y)(2x+y)
d) 10x-6x2-5y+3xy
2x(5-3x)-y(5-3x)
(2x-y)(5-3x)
thông cảm câu c hok bít làm câu a bạn nhân ra là bạn thấy
\(=\left(4x-x-1\right)\left(4x+x+1\right)=\left(3x-1\right)\left(5x+1\right)\)
\(=\left(4x-x-1\right)\left(4x+x+1\right)=\left(3x-1\right)\left(5x+1\right)\)
(x + 2y)² - (x - y)²
= (x + 2y - x + y)(x + 2y + x - y)
= 3y(2x + y)
\(\left(x+2y\right)^2-\left(x-y\right)^2\)
\(=\left[\left(x+2y\right)-\left(x-y\right)\right]\left[\left(x+2y\right)+\left(x-y\right)\right]\)
\(=\left(x+2y-x+y\right)\left(x+2y+x-y\right)\)
\(=3y\left(2x+y\right)\)
\(\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)+\left(x-3\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x-1\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(2x+1+x-3\right)^2\)
\(=\left(3x-2\right)^2\)
------------------------------------
\(a^3+3a^2-6a-8\)
\(=a^3+4a^2-a^2-4a-2a-8\)
\(=\left(a^3+4a^2\right)-\left(a^2+4a\right)-\left(2a+8\right)\)
\(=a^2\left(a+4\right)-a\left(a+4\right)-2\left(a+4\right)\)
\(=\left(a+4\right)\left(a^2-a-2\right)\)
\(=\left(a+4\right)\left(a^2-2a+a-2\right)\)
\(=\left(a+4\right)\left[\left(a^2-2a\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left[a\left(a-2\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left(a-2\right)\left(a+1\right)\)
---------------------------------
\(2x^2-5x+2\)
\(=2x^2-4x-x+2\)
\(=\left(2x^2-4x\right)-\left(x-2\right)\)
\(=2x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(2x-1\right)\)
-----------------------------------------
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x-4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-2\right)\)
-------------------------------------
\(a^2-1+4b-4b^2\)
\(=a^2-\left(1-4b+4b^2\right)\)
\(=a^2-\left(1-2b\right)^2\)
\(=\left(a-1+2b\right)\left(a+1-2b\right)\)
----------------------------------------
\(a^4+6a^2b+9b^2-1\)
\(=\left(a^4+6a^2b+9b^2\right)-1\)
\(=\left(a^2+3b\right)^2-1\)
\(=\left(a^2+3b-1\right)\left(a^2+3b+1\right)\)
---------------------------------
\(2x^3+16y^3\)
\(=2\left(x^3+8y^3\right)\)
\(=2\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
Lần sau ghi đề tách riêng từng câu ra nhé em. Ghi dính chùm vậy khó nhìn lắm. Sẽ ít ai giải cho em
a: =x^2+2x+3x+6
=(x+2)(x+3)
b: =5x(x+y)-(x+y)
=(x+y)(5x-1)
c: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
b) x2 - 2x - 4y2 - 4y
= x2 - 2x + 1 - 4y2 - 4y - 1
= ( x - 1 )2 - [ ( 2y )2 + 2.2.y + 1 ]
= ( x - 1 )2 - ( 2y + 1 )2
= ( x - 1 + 2y + 1 ).( x - 1 - 2y - 1 )
= ( x + 2y ).( x - 2y - 2 )
Bài làm
a) xz - yz - x2 + 2xy - y2
= ( xz - yz ) - ( x2 - 2xy + y2 )
= z( x - y ) - ( x - y )2
= ( x - y )( z - x + y )
b) x2 - 2x - 4y2 - 4y
= x2 - 2x - 4y2 - 4y + 1 - 1
= ( x2 - 2x + 1 ) - ( 4y2 + 4y + 1 )
= ( x - 1 )2 - ( 2y + 1 )2
= ( x - 1 - 2y - 1 )( x - 1 + 2y + 1 )
= ( x - 2y - 2 )( x + 2y )
# Học tốt #
Bài 1:
\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)
Bài 2:
\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)
Bài 3:
\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)
a: =(x^2-1)^2-2x(x^2-1)+x(x^2-1)-2x^2
=(x^2-1)(x^2-1-2x)+x(x^2-1-2x)
=(x^2-2x-1)(x^2+x-1)
b: \(=\left(x^2+1\right)^2+x\left(x^2+1\right)+2x\left(x^2+1\right)+2x^2\)
\(=\left(x^2+1\right)\left(x^2+x+1\right)+2x\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+2x+1\right)\)
\(=\left(x+1\right)^2\cdot\left(x^2+x+1\right)\)