Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\Leftrightarrow x-2x^2+2x^2-3x-4x+6=0\)
\(\Leftrightarrow-6x+6=0\)
\(\Leftrightarrow x=1\)
b/
\(\Leftrightarrow2x^2-4x-2x^2-6x=0\)
\(\Leftrightarrow-10x=0\)
\(\Leftrightarrow x=0\)
c/
\(\Leftrightarrow\left(2x+3\right)\left(2x+3+x-3\right)=0\)
\(\Leftrightarrow3x\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{3}{2}\end{matrix}\right.\)
c/
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(9y^2+30y+25\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(3y+5\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\3x+5=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=-\frac{5}{3}\)
d/
\(\Leftrightarrow4x^2-4x+1+4x^2+4x+1-2\left(4x^2-2x-2\right)+x=12\)
\(\Leftrightarrow8x^2+x+2-8x^2+4x+4=12\)
\(\Leftrightarrow5x=6\)
\(\Leftrightarrow x=\frac{6}{5}\)
a)
$(2x+1)^2-(2x+1)(2x-1)=(2x+1)[(2x+1)-(2x-1)]$
$=2(2x+1)$
b)
$(4x+3)(x-1)-2x(2x+1)=4x^2-x-3-4x^2-2x=-3x-3=-3(x+1)$
c)
$(2x+3)^2-(4x+1)(x+5)=(4x^2+12x+9)-(4x^2+21x+5)$
$=-9x+4$
d)
$(x+2)^3-(x-1)(x^2+x+1)=(x^3+6x^2+12x+8)-(x^3-1)$
$=6x^2+12x+9$
e)
$(x+2)(x^2-2x+1)-(x+3)(x-3)=(x^3-3x+2)-(x^2-9)$
$=x^3-x^2-3x+11$
f)
$(x+3)(x^2-3x+9)-(x^2+2x+4)(x-2)$
$=x^3+3^3-(x^3-2^3)=3^3+2^3=35$
Bài 2: Tìm x
a) Ta có: (x-2)(x-1)=x(2x+1)+2
\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)
\(\Leftrightarrow x^2-3x+2-2x^2-x-2=0\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy: S={0;-4}
b) Ta có: \(\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)
\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)
\(\Leftrightarrow0x=0\)
Vậy: S={x|\(x\in R\)}
c) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-3x^2+3x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x-3=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
d) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x+20=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\frac{10}{3}\)
Vậy: \(S=\left\{-\frac{10}{3}\right\}\)
e) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow x^3+5x^2+3x^2+2x+10-x^3-8x^2=27\)
\(\Leftrightarrow2x=27-10=17\)
hay \(x=\frac{17}{2}\)
Vậy: \(S=\left\{\frac{17}{2}\right\}\)
a)(3x-1)2+2(3x-1)(2x+1)2(2x+1)=48x^4+56x^3+21x^2-12x-1 cái này tra google
b)(x2+1)(x-3)-(x-3)(x2+3x+9)=(x2+1)(x-3)-(x-3)(x+3)2=(x-3)[(x2+1)-(x+3)2 ]
c)(2x+3)2+(2x+5)2-2(2x+3)(2x+5)=(2x+3)2+(2x+5)2-(2x+3)(2x+5)-(2x+3)(2x+5)=(2x+3)(2x+3-2x+5)+(2x+5)(2x+5-2x+3)
=8(2x+3)+8(2x+5)=8(2x+3+2x+5)
=8(4x+8)
d)(x-3)(x+3)-(x-3)2 =(x-3)(x+3)-(x-3)(x-3)=(x-3)(x+3-x-3)=0
e)(2x+1)2+2(4x2-1)+(2x-1)2 =(2x+1)2+2[(2x)2 -1]+(2x-1)2 =(2x+1)(2x+1+2x-1)+(2x-1)(2x+1+2x-1)=4x(2x+1)+4x(2x-1)
=4x(2x+1+2x-1)=16x2
f)(x2-1)(x+2)-(x-2)(x2+2x+4)= (x2-1)(x+2)-(x-2)(x+2)2 =(x2-1)(x+2)-(x2-22)(x+2)=(x+2)(x2-1-x2-22) mình đoán câu f khai triển ra thế này nhưng kq không giống nhau nên chắc bạn phải tự làm rồi
\(x^2-2x+1=2x-2\)
\(\Leftrightarrow\left(x-1\right)^2=2\left(x-1\right)\)\(\Leftrightarrow\left(x-1\right)^2-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x-1\right)-2\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-1-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;3\right\}\)
\(\Leftrightarrow x^2-2x+1-2x+2=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
#quankun^^