Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|3x+5\right|=x+1\)
TH1: \(3x+5=x+1\left(x\ge-\dfrac{5}{3}\right)\)
\(\Rightarrow3x-x=1-5\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\left(ktm\right)\)
TH2: \(3x-5=-\left(x+1\right)\left(x< -\dfrac{5}{3}\right)\)
\(\Rightarrow3x-5=-x-1\)
\(\Rightarrow3x+x=-1+5\)
\(\Rightarrow4x=4\)
\(\Rightarrow x=1\)
Vậy không có x thõa mãn
_______
\(\left|2x-3\right|=2x-3\)
\(\Rightarrow2x-3=2x-3\left(x\ge\dfrac{3}{2}\right)\)
\(\Rightarrow0=0\) (luôn đúng)
Nên mọi x đề thỏa mãn khi \(x\ge\dfrac{3}{2}\)
Vậy: ...
|3x + 5| = x + 1
TH1: x ≥log ) -5/3
(1) ⇒ 3x + 5 = x + 1
3x - x = 1 - 5
2x = -4
x = -2 (loại)
*) TH2: x < -5/3
(1) ⇒ 3x + 5 = -x - 1
3x + x = -1 - 5
4x = -6
x = -3/2 (loại)
Vậy không tìm được x thỏa mãn yêu cầu
--------
|2x - 3| = 2x - 3 (2)
*) TH1: x 3/2
(2) ⇒ 2x - 3 = 2x - 3
0x = 0 (luôn đúng với mọi x ≥ 3/2)
*) TH2: x < 3/2
(2) ⇒ 2x - 3 = 3 - 2x
2x + 2x = 3 + 3
4x = 6
x = 3/2 (loại)
Vậy x ≥ 3/2
Bài này ko có gì khó đâu, bạn chỉ cần tính bình thường và chú ý dấu đóng mở ngoặc thôi. Chúc bạn học giỏi
\(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
=> \(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
=> \(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)+\left(-\frac{1}{3}x-x\right)=5\)
=> \(\frac{2}{3}-\frac{4}{3}x=5\)
=> \(\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)
=> \(x=-\frac{13}{4}\)