x2
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2023

\(x^2-2mx-3=0\left(1\right)\)

\(a=1;b=-2m;c=-3\)

Ta có a và c trái dấu nên ac<0 \(\Rightarrow\Delta>0\)

Do đó phuong trình (1) luôn có 2 nghiệm phân biệt với mọi m.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2m\right)}{1}=2m\\x_1x_2=\dfrac{c}{a}=\dfrac{-3}{1}=-3\end{matrix}\right.\)

Ta có: \(\left(x_1-2x_2\right)^2+x_2-2mx_1=20\)

\(\Rightarrow x_1^2-4x_1x_2+4x_2^2+x_2-2mx_1=20\)

\(\Rightarrow x_1^2-4x_1x_2+4x_2^2+x_2-\left(x_1+x_2\right)x_1=20\)

\(\Rightarrow-5x_1x_2+4x_2^2+x_2=20\)

\(\Rightarrow-5.\left(-3\right)+4x_2^2+x_2=20\)

\(\Leftrightarrow4x_2^2+x_2-5=0\)

Giải phương trình trên ta được: \(\left[{}\begin{matrix}x_2=1\\x_2=-\dfrac{5}{4}\end{matrix}\right.\)

Với x2=1 là nghiệm của phương trình (1). Ta có:

\(1^2-2m.1-3=0\Rightarrow m=-1\)

Với x2=-5/4 là nghiệm của phương trình (1). Ta có:

\(\left(-\dfrac{5}{4}\right)^2-2m.\left(-\dfrac{5}{4}\right)-3=0\Rightarrow m=\dfrac{23}{40}\)

Vậy m=-1 hay m=23/40

10 tháng 4 2023

pt và ng là j vậy bn

13 tháng 6 2016

\(x^2+6x+5=0\)

<=>\(x^2+x+5x+5=0\)

<=>\(x\left(x+1\right)+5\left(x+1\right)=0\)

<=>\(\left(x+1\right)\left(x+5\right)=0\hept{\begin{cases}x+1=0< =>x=-1\\x+5=0< =>x=-5\end{cases}}\)bấm máy thử nghiệm đc mà .Bài này lớp 8 mà đâu phải lớp 9

13 tháng 6 2016

x^2+6x+5=0

<=> x^2+x+5x+5=0

<=>x(x+1)+5(x+1)=0

<=> (x+5)(x+1)=0

=> x+5=0 hoặc x+1=0 <=> x=-5 hoặc x=-1

12 tháng 9 2018

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)

a)thay \(x=2\sqrt{2}\)vào a ra có

\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)

\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)

Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)

14 tháng 10 2018

\(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}\)

\(=xyz.\left [ \frac{1}{yz(1+x^2)}+\frac{2}{xz(1+y^2)}+\frac{3}{xy(1+z^2)} \right ]\)

\(=xyz.\left [ \frac{1}{yz+x(x+y+z)}+\frac{2}{xz+y(x+y+z)}+\frac{3}{xy+z(x+y+z)} \right ]\)

\(=xyz.\left [ \frac{1}{(x+y)(x+z)}+\frac{2}{(x+y)(y+z)}+\frac{3}{(x+z)(y+z)} \right ]\)

\(=xyz.\frac{y+z+2(z+x)+3(x+y)}{(x+y)(y+z)(z+x)}=\frac{xyz(5x+4y+3z)}{(x+y)(y+z)(z+x)}\)

Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR 

\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào