K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Delta=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(-2\right)\left(m+5\right)\)

\(=4\left(m^2+2m+1\right)+8\left(m+5\right)\)

\(=4m^2+8m+4+8m+20\)

\(=4m^2+16m+24=\left(2m+4\right)^2+8>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=-2\left(m+5\right)\end{matrix}\right.\)

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=1\)

=>\(\dfrac{x_1+x_2}{x_1x_2}=1\)

=>\(\dfrac{2\left(m+1\right)}{-2\left(m+5\right)}=1\)

=>\(\dfrac{-\left(m+1\right)}{m+5}=1\)

=>-m-1=m+5

=>-2m=6

=>m=-3

c: Thay m=1 vào (1), ta được:

\(x^2-2\left(1+1\right)x-2\left(1+5\right)=0\)

=>\(x^2-4x-12=0\)

=>(x-6)(x+2)=0

=>\(\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)

Thịnh lm đúng rồi đó bạn! 

a: Khi m=1 thì pt sẽ là: x^2+4x-3=0

=>x=-2+căn 7 hoặc x=-2-căn 7

b: Δ=(2m-6)^2-4(m-4)

=4m^2-24m+36-4m+16

=4m^2-28m+52=(2m-7)^2+3>0

=>PT luôn có hai nghiệm pb

c: PT có hai nghiệm trái dấu

=>m-4<0

=>m<4

a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)

\(=4m^2+16m+16+8m+20=4m^2+24m+36\)

\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì m+3<>0

hay m<>-3

Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)

\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)

\(\Leftrightarrow4m^2+24m+36=4\)

\(\Leftrightarrow m^2+6m+9=1\)

=>m+3=1 hoặc m+3=-1

=>m=-2 hoặc m=-4

28 tháng 1 2022

1, Với x >=  0 ; x khác 1 

\(P=\dfrac{\sqrt{x}\left(x-1\right)+2\sqrt{x}\left(\sqrt{x}-1\right)-\left(3x+1\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}+2x-3\sqrt{x}-3x\sqrt{x}-3x-\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-2x\sqrt{x}-x-4\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

 

28 tháng 1 2022

mình sửa đề câu 2 nhé 

a, \(x^2+mx-1=0\)

\(\Delta=m^2-4\left(-1\right)=m^2+4>0\)

Vậy pt luôn có 2 nghiệm pb 

b, Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)

Ta có : \(\left(x_1+x_2\right)^2-2x_1x_2=7\)

Thay vào ta được : \(m^2+2=7\Leftrightarrow m^2=5\Leftrightarrow m=\pm\sqrt{5}\)

 

a: khi m=1 thì pt sẽ là:

x^2-4x-5=0

=>x=5; x=-1

b: |x1|-|x2|=-2022

=>x1^2+x2^2-2|x1x2|=2022^2

=>(x1+x2)^2-2x1x2-2|x1x2|=2022^2

=>(2m+2)^2-2|-5|-2*(-5)=2022^2

=>(2m+2)^2=2022^2

=>2m+2=2022 hoặc 2m+2=-2022

=>m=1010 hoặc m=-1012

a: Δ=(2m-2)^2-4*(-2m)

=4m^2-8m+4+8m=4m^2+4>0

=>Phương trình luôn có hai nghiệm phân biệt

b: x1+x2=2m-2; x1x2=-2m

c: x1^2+x2^2=4

=>(x1+x2)^2-2x1x2=4

=>(2m-2)^2-2*(-2m)=4

=>4m^2-8m+4+4m=4

=>4m^2-4m=0

=>m=0 hoặc m=1

19 tháng 4 2021

a) Với m=1,ta có:

x2-2.1.x+2.1-2=0

<=> x2-2x=0

<=> x(x-2)=0

<=> x=0 hoặc x-2=0

<=> x=0 hoặc x=2

a: \(\text{Δ }=\left(-2m\right)^2-4\left(2m-5\right)=4m^2-8m+20\)

\(=4m^2-8m+4+16=\left(2m-2\right)^2+16>0\)

=>(1) luôn có hai nghiệm phân biệt

b: (x1-x2)^2=32

=>(x1+x2)^2-4x1x2=32

=>\(\left(2m\right)^2-4\left(2m-5\right)=32\)

=>4m^2-8m+20-32=0

=>4m^2-8m-12=0

=>m^2-2m-3=0

=>m=3 hoặc m=-1