K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

x2 - 25 + y2 + 2xy

x2 - 25 + y2 + 2xy

Chưa trả lờiNhật Linh Đặng

(2x + 1)2 - 49x2 + 56x - 1s1.jpg

x2 - 25 + y2 + 2xy

(2x + 1)2 - 49x2 + 56x - 16

xm + 4 - xm + 3 - x - 1

a3 + b3 + c3 - 3abc

x2 - 25 + y2 + 2xy

(2x + 1)2 - 49x2 + 56x - 16

xm + 4 - xm + 3 - x - 1

a3 + b3 + c3 - 3abc

x2 - 25 + y2 + 2xy

(2x + 1)2 - 49x2 + 56x - 16

xm + 4 - xm + 3 - x - 1

a3 + b3 + c3 - 3abc

x2 - 25 + y2 + 2xy

(2x + 1)2 - 49x2 + 56x - 16

xm + 4 - xm + 3 - x - 1

a3 + b3 + c3 - 3abc

x2 - 25 + y2 + 2xy

x2 - 25 + y2 + 2xy

(2x + 1)2 - 49x2 + 56x - 16

xm + 4 - xm + 3 - x - 1

a3 + b3 + c3 - 3abc

(2x + 1)2 - 49x2 + 56x - 

x2 - 25 + y2 + 2xy

(2x + 1)2 - 49x2 + 56x - 16

xm + 4 - xm + 3 - x - 1

a3 + b3 + c3 - 3abc

16

xm + 4 - xm + 3 - x - 1

a3 + b3 + c3 - 3abc

6

xm + 4 - xm + 3 - x - 1

a3 + b3 + c3 - 3abc

(2x + 1)2 - 49x2 + 56x - 16

xm + 4 - xm + 3 - x - 1

a3 + b3 + c3 - 3abc

4 tháng 8 2017

a) \(\left(2x+1\right)^2-49x^2+56x-16\)

\(=4x^2+4x+1-49x^2+56x-16\)

\(=-45x^2+60x-15\)

\(=-45x^2+45x+15x-15\)

\(=-45x\left(x-1\right)+15\left(x-1\right)\)

\(=\left(-45x+15\right)\left(x-1\right)\)

\(=-15\left(3x-1\right)\left(x-1\right).\)

4 tháng 8 2017

câu b sai đề

4 tháng 8 2017

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Cảm ơn bạn nhiều nha

a) Ta có: \(\left(x^4+2x^2y^2+y^4\right):\left(x^2+y^2\right)\)

\(=\left(x^2+y^2\right)^2:\left(x^2+y^2\right)\)

\(=x^2+y^2\)

b) Ta có: \(\left(49x^2-81y^2\right):\left(7x+9y\right)\)

\(=\frac{\left(7x+9y\right)\left(7x-9y\right)}{7x+9y}\)

\(=7x-9y\)

c) Ta có: \(\left(x^3+3x^2y+3xy^2+y^3\right):\left(x+y\right)\)

\(=\left(x+y\right)^3:\left(x+y\right)\)

\(=\left(x+y\right)^2=x^2+2xy+y^2\)

d) Ta có: \(\left(x^3-3x^2y+3xy^2-y^3\right):\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3:\left(x-y\right)^2\)

\(=\left(x-y\right)\)

e)Sửa đề: \(\left(8x^3+1\right):\left(2x+1\right)\)

Ta có: \(\left(8x^3+1\right):\left(2x+1\right)\)

\(=\frac{\left(2x+1\right)\left(4x^2-2x+1\right)}{2x+1}\)

\(=4x^2-2x+1\)

f) Ta có: \(\left(8x^3-1\right):\left(4x^2+2x+1\right)\)

\(=\frac{\left(2x-1\right)\left(4x^2+2x+1\right)}{4x^2+2x+1}\)

\(=2x-1\)

2 tháng 9 2020

a, (x4 + 2x2y2 + y4) : (x2 + y2)

= (x2 + y2)2 : (x2 + y2)

= x2 + y2

b, (49x2 - 81y2) : (7x + 9y)

= (7x - 9y)(7x + 9y) : (7x + 9y)

= 7x - 9y

c, (x3 + 3x2y + 3xy2 + y3) : (x + y)

= (x + y)3 : (x + y)

= (x + y)2

d, (x3 - 3x2y + 3xy2 - y3) : (x2 - 2xy + y2)

= (x - y)3 : (x - y)2

= x - y

Phần e thiếu thì phải

f, (8x3 - 1) : (4x2 + 2x + 1)

= (2x - 1)(4x2 + 2x + 1) : (4x2 + 2x + 1)

= 2x - 1

Chúc bn học tốt!

18 tháng 12 2017

4.a) \(2x^2-10x-3x-2x^2-26=0\)

\(-13x-26=0\Rightarrow-13\left(x+2\right)=0\)

\(\Rightarrow x=-2\)

b) \(2\left(x+5\right)-x^2-5x=0\)

\(2x+10-x^2-5x=0\Leftrightarrow-x^2-3x+10=0\)

\(-\left(x^2+3x-10\right)=0\)

\(-\left(x^2-2x+5x-10\right)=-\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\)

\(-\left(x-2\right)\left(x+5\right)=0\)

\(\left\{{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

c) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\left(x-8\right)\left(3x+2\right)=0\)

\(\left\{{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

d) \(x^3+x^2-4x-4=0\)

\(x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)

g) \(\left(x-1\right)\left(2x+3-x\right)=0\)

\(\left(x-1\right)\left(x+3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

h) \(x^2-4x+8-2x+1=x^2-6x+9=0\)

\(\left(x-3\right)^2=0\Rightarrow x=3\)

28 tháng 9 2019

Để mình chỉnh lại nhé.

28 tháng 9 2019

Chúc bạn học tốt!

Tham khảo:

Bài 5:

Bài 2. Thực hiện phép nhân: a. 3x(4x - 3) - (2x -1)(6x + 5) b. 4x(3x2 - x) - (2x + 3)(6x2 - 3x + 1) c. (x - 2)(1x + 2)(x + 4) Bài 3. Chứng ming rằng: a. (x - y)(x + y) = x2 - y2 b. (x + y)2 = x2 + 2xy + y2 c. (x - y)2 = x2 - 2xy + y2 d. (x + y)(x2 - xy + y2 ) = x3 + y3 e. (x - y)(x3 + x2 y + xy2 + y3 ) = x4 - y4 Bài 4. Tìm x biết: a. 3(2x - 3) + 2(2 - x) = -3 b. 2x(x2 - 2) + x2 (1 - 2x) - x2 = -12 c. 3x(2x + 3) - (2x + 5)(3x - 2) = 8 ...
Đọc tiếp

Bài 2. Thực hiện phép nhân:

a. 3x(4x - 3) - (2x -1)(6x + 5)

b. 4x(3x2 - x) - (2x + 3)(6x2 - 3x + 1)

c. (x - 2)(1x + 2)(x + 4)

Bài 3. Chứng ming rằng:

a. (x - y)(x + y) = x2 - y2 b. (x + y)2 = x2 + 2xy + y2

c. (x - y)2 = x2 - 2xy + y2 d. (x + y)(x2 - xy + y2 ) = x3 + y3

e. (x - y)(x3 + x2 y + xy2 + y3 ) = x4 - y4

Bài 4. Tìm x biết:

a. 3(2x - 3) + 2(2 - x) = -3 b. 2x(x2 - 2) + x2 (1 - 2x) - x2 = -12

c. 3x(2x + 3) - (2x + 5)(3x - 2) = 8 d. 4x(x -1) - 3(x2 - 5) - x2 = (x - 3) - (x + 4)

e. 2(3x -1)(2x + 5) - 6(2x -1)(x + 2) = -6

Bài 5. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x:

a. A = 2x(x -1) - x(2x + 1) - (3 - 3x) b. B = 2x(x - 3) - (2x - 2)(x - 2)

c. C = (3x - 5)(2x +11) - (2x + 3)(3x + 7) d. D = (2x +11)(3x - 5) - (2x + 3)(3x + 7)

Bài 6. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào y:

P = (2x - y)(4x2 + 2xy + y2 ) + y3

các bạn ơi giúp mình nha

3
8 tháng 3 2019

xuống lớp 1 học bạn ơi

13 tháng 8 2019

Bn nên ra từng bài ra vậy ai làm cho . hum

22 tháng 9 2017

1. \(a^3+b^3+c^3-3abc\)

\(=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2+c^3-3abc\)

\(=\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc\)

\(=\left[\left(a+b\right)^3+c^3\right]-3ab.\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left[\left(a+b\right)^2-c.\left(a+b\right)+c^2\right]-3ab.\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right).\left(a^2+b^2+c^2-bc-ab-ca\right)\)

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right).\left(a^2+b^2+c^2-bc-ab-ca\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\RightarrowĐpcm.\)

2. Dễ rồi.

3.

\(A=2.\left(x-y\right).\left(x^2+xy+y^2\right)-3.\left(x^2+2xy+y^2\right)\)

\(A=4.\left(x^2+xy+y^2\right)-3x^2-6xy-3y^2\)

\(A=4x^2+4xy+4y^2-3x^2-6xy-3y^2\)

\(A=x^2-2xy+y^2\)

\(A=\left(x-y\right)^2\)

Thay \(x-y=2\) vào ta có:

\(A=\left(x-y\right)^2\)\(=2^2=4\)

4. \(A=x^2-3x+5\)

\(A=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

\(\Rightarrow x-\dfrac{3}{2}=0\)

\(\Rightarrow x=\dfrac{-3}{2}\)

\(\Rightarrow Min_A=\dfrac{11}{4}\Leftrightarrow x=\dfrac{-3}{2}\)

\(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\(B=4x^2-4x+1+x^2+4x+4\)

\(B=5x^2+5\)

Ta có: \(5x^2\ge0\)

\(\Rightarrow5x^2+5\ge0\)

\(\Rightarrow Min_B=5\Leftrightarrow x=0\)

1. Dùng phương pháp hệ số bất định : a) 4x4 + 4x3 + 5x2 + 2x + 1 ; b) x4 - 7x3 + 14x2 - 7x + 1 ; c) x4 - 8x + 63 ; d) (x + 1)4 + (x2 + x + 1)2. 2. a) x8 + 14x4 + 1 ; b) x8 + 98x4 + 1. Phân tích các đa thức sau thành nhân tử (từ bài 7 đến bài 16) : 1. a) 6x2 – 11x +...
Đọc tiếp

1. Dùng phương pháp hệ số bất định :

a) 4x4 + 4x3 + 5x2 + 2x + 1 ; b) x4 - 7x3 + 14x2 - 7x + 1 ;

c) x4 - 8x + 63 ; d) (x + 1)4 + (x2 + x + 1)2.

2. a) x8 + 14x4 + 1 ; b) x8 + 98x4 + 1.

Phân tích các đa thức sau thành nhân tử (từ bài 7 đến bài 16) :

1. a) 6x2 – 11x + 3 ; b) 2x2 + 3x – 27 ; c) x2 – 10x + 24 ;

d) 49x2 + 28x – 5 ; e) 2x2 – 5xy – 3y2.

2. a) x3 – 2x + 3 ; b) x3 + 7x – 6 ; c) x3 – 5x + 8x – 4 ;

d) x3 – 9x2 + 6x + 16 ; e) x3 + 9x2 + 6x – 16 ; g) x3 – x2 + x – 2 ;

h) x3 + 6x2 – x – 30 ; i) x3 – 7x – 6 (giải bằng nhiều cách).

3. a) 27x3 + 27x +18x + 4 ; b) 2x3 + x2 +5x + 3 ; c) (x2 – 3)2 + 16.

4. a) (x2 + x)2 - 2(x2 + x) - 15 ; b) x2 + 2xy + y2 - x - y - 12 ;

c) (x2 + x + 1)(x2 + x + 2) - 12 ;

5. a) (x + a)(x + 2a)(x + 3a)(x + 4a) + a4 ;

b) (x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2 ;

c) 2(x4 + y4 + z4) - (x2 + y2 + z2)2 - 2(x2 + y2 + z2)(x + y + z)2 + (x + y + z)4.

6. (a + b + c)3 - 4(a3 + b3 + c3) - 12abc bằng cách đổi biến : đặt a + b = m và a - b = n.

7. a) 4x4 - 32x2 + 1 ; b) x6 + 27 ;

c) 3(x4 + x+2+ + 1) - (x2 + x + 1)2 ; d) (2x2 - 4)2 + 9.

8. a) 4x4 + 1 ; b) 4x4 + y4 ; c) x4 + 324.

9. a) x5 + x4 + 1 ; b) x5 + x + 1 ; c) x8 + x7 + 1 ;

d) x5 - x4 - 1 ; e) x7 + x5 + 1 ; g) x8 + x4 + 1.

10. a) a6 + a4 + a2b2 + b4 - b6 ; b) x3 + 3xy + y3 - 1.

Help me!!!!!!!!!!!!!!!!!

1

Bài 1: 

a: \(6x^2-11x+3\)

\(=6x^2-9x-2x+3\)

\(=3x\left(2x-3\right)-\left(2x-3\right)\)

\(=\left(2x-3\right)\left(3x-1\right)\)

b: \(2x^2+3x-27\)

\(=2x^2+9x-6x-27\)

\(=x\left(2x+9\right)-3\left(2x+9\right)\)

\(=\left(2x+9\right)\left(x-3\right)\)

c: \(x^2-10x+24\)

\(=x^2-4x-6x+24\)

\(=x\left(x-4\right)-6\left(x-4\right)\)

\(=\left(x-4\right)\left(x-6\right)\)

d: \(49x^2+28x-5\)

\(=49x^2+28x+4-9\)

\(=\left(7x+2\right)^2-9\)

\(=\left(7x-1\right)\left(7x+5\right)\)

e: \(2x^2-5xy-3y^2\)

\(=2x^2-6xy+xy-3y^2\)

\(=2x\left(x-3y\right)+y\left(x-3y\right)\)

\(=\left(x-3y\right)\left(2x+y\right)\)