Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^2-2020x+2021=0\)
=> \(\Delta^,=b^{,2}-ac=\left(-1010\right)^2-2021=1018079>0\)
Nên phương trình có 2 nghiệm phân biệt .
Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2020\\x_1x_2=2021\end{matrix}\right.\)
Ta có : \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{2020}{2021}\)
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
Ta có: đen-ta phẩy= [-(m+1)]2-1(-m-2)= m2+3m+3 =(m+3/2)2+3/4 >0 với mọi m
=>Phương trình luôn có nghiệm x1;x2 với mọi m. KHi đó,theo hệ thức vi-ét:
x1+x2=-b/a=2(m+1) và x1x2=c/a=-(m+2)
Ta có: 1/x1+1/x2= (x1+x2)/x1x2 =(2m+2)/-(m+2)=[ 2(m+2)-2]/-(m+2)
= -2+2/(m+2)
Suy ra: D nguyên khi 2/(m+2) nguyên
=> (m+2) thuộc { 1;-1;2;-2}
<=> m thuộc { -1;-3;0;-4}
Bạn xem lại đề. Biểu thức không tồn tại dưới dạng $\frac{1}{x_1}=\frac{1}{x_2}$