Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình thử nha :33
ĐKXĐ : \(x\ne-3,x\ne-26,x\ne-6,x\ne1\)
Ta có :
\(A=\left[\frac{3}{2}-\left(\frac{x^4\left(x^2+1\right)-x^4-1}{x^2+1}\right)\cdot\frac{x^3-4x^2+\left(x-4\right)}{x^6\left(x+6\right)-\left(x+6\right)}\right]:\frac{\left(x+3\right)\left(x+26\right)}{3\left(x-2\right)\left(x+6\right)}\)
\(=\left[\frac{3}{2}-\left(\frac{x^6-1}{x^2+1}\right)\cdot\frac{\left(x-4\right)\left(x^2+1\right)}{\left(x+6\right)\left(x^6-1\right)}\right]\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)
\(=\left[\frac{3}{2}-\frac{x-4}{x+6}\right]\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)
\(=\frac{x+26}{2\left(x+6\right)}\cdot\frac{3\left(x-2\right)\left(x+6\right)}{\left(x+3\right)\left(x+26\right)}\)
\(=\frac{3\left(x-2\right)}{2\left(x+3\right)}\)
Vậy : \(A=\frac{3\left(x-2\right)}{2\left(x+3\right)}\left(x\ne-3,x\ne-26,x\ne-6,x\ne1\right)\)
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right):\left(\frac{x+2006}{x}\right)\)
\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{x^2-1}\right):\left(\frac{x+2006}{x}\right)\)
\(=\frac{x^2-1}{x^2-1}:\frac{x+2006}{x}=\frac{x}{x+2006}\)
Ta có :
\(A=\frac{x^2+x+1}{\left(x+1\right)^2}\)
\(A=\frac{x^2+2x+1-x-1+1}{x^2+2x+1}\)
\(A=\frac{x^2+2x+1}{\left(x+1\right)^2}+\frac{-x-1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\)
\(A=\frac{\left(x+1\right)^2}{\left(x+1\right)^2}-\frac{x+1}{\left(x+1\right)^2}+\frac{1^2}{\left(x+1\right)^2}\)
\(A=1-\frac{1}{x+1}+\left(\frac{1}{x+1}\right)^2\)
Đặt \(a=\frac{1}{x+1}\) ta có :
\(A=1-a+a^2\)
\(A=a^2-a+1\)
\(A=\left(a^2-a+\frac{1}{4}\right)+\frac{3}{4}\)
\(A=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\)\(a-\frac{1}{2}=0\)
\(\Leftrightarrow\)\(a=\frac{1}{2}\)
Do đó :
\(a=\frac{1}{x+1}\)
\(\Leftrightarrow\)\(\frac{1}{2}=\frac{1}{x+1}\)
\(\Leftrightarrow\)\(x+1=2\)
\(\Leftrightarrow\)\(x=1\)
Vậy GTNN của \(A\) là \(\frac{3}{4}\) khi \(x=1\)
Chúc bạn học tốt ~
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+1+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+1\)
\(=3+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\)
Áp dụng BĐT cô-si cho hai số không âm ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\sqrt{1}=2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\sqrt{1}=2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\sqrt{1}=2\)
Suy ra: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3+2+2+2=9\)
=>Điều phải chứng minh
đặt A= vế trái
nhân phá ngoặc A ta đc:
A=1+x/y+x/z+y/x+1+y/z+z/x+z/y+1
=3+(x/y+y/x)+(x/z+z/x)+(y/z+z/y)
áp dụng BĐT:a/b+b/a>=2
=>A>=3+2+2+2=9
vậy...
đơn giản
nhưng trả lời câu hỏi của tớ đã
\(\frac{1}{x^2+3}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{1}{2}\left(27-\frac{1}{x+9}\right)\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}=27-\frac{1}{x+9}\)
Mà
\(\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}\)
\(=\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}\)
\(=\frac{1}{x}-\frac{1}{x+9}\)
\(\Rightarrow\frac{1}{x}=27\Rightarrow x=\frac{1}{27}\)
Mk sai từ dòng 3 nhá --
\(=\left(x^2-1\right)\left(\frac{2-\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\frac{\left(x^2-1\right)\left(2-\left(x^2-1\right)\right)}{\left(x-1\right)\left(x+1\right)}=2-x^2+1=3-x^2\)
\(\left(x^2-1\right)\left(\frac{1}{x-1}-\frac{1}{x+1}-1\right)\)
\(=\left(x^2-1\right)\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{\left(x+1\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\right)\)
\(=\left(x^2-1\right)\left(\frac{-\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=\frac{-\left(x-1\right)^2\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=-\left(x-1\right)\left(x+1\right)=-x^2+1\)