Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(A=x^2+4x+7=x^2+2.x.2+2^2+3=\left(x+2\right)^2+3\ge3\)
Dấu "=" xảy ra <=> x + 2 =0 => x = -2
Vậy AMin = 3 khi và chỉ khi x = -2
b) \(B=x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy BMin = 3/4 khi và chỉ khi x = 1/2
c) \(C=x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> x+1/2 = 0 <=> x = -1/2
Vậy CMin = 3/4 khi và chỉ khi x = -1/2
e) \(E=x+\sqrt{x}+1=\left(\sqrt{x}\right)^2+2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" không xảy ra
g) \(G=x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> \(\sqrt{x}-\frac{1}{2}=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)
Vậy GMin = 3/4 khi x = 1/4
Ta co:X1^3 +X2 ^3=(x1+ X2 )(X1 2 -X 1X2 +X2 2) x12X22-2=(X1.X2)2_2 Sau do ap dung VIET vao la se tim ra duoc m
Chào ng đẹp
b) VT=x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)=(x1+x2)((x1+x2)^2-3x1x2)
VP=(x1*x2)^2-2
Áp dụng viét thay vô
pt <=> x4-2x2+1+4x2-8x+4=12x2+24x+12
<=> x4=10x2+32x+7
<=> x4+6x2+9=16x2+32x+16
<=> (x2+3)2=16(x+1)2
<=> x2+3=4(x+1) (1) hoac x2+3=-4(x+1) (2)
(1) <=> x2-4x-1=0 <=> \(x=2+\sqrt{5}\)hoac \(x=2-\sqrt{5}\)
(2) <=> x2+4x+7=0 pt vo nghiem
Vay: pt co nghiem \(x=2+\sqrt{5}\)hoac \(x=2-\sqrt{5}\)
\(\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)=72x^2\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-14x+40\right)\left(x^2-13x+40\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40-0,5x\right)\left(x^2-13,5x+40+0,5x\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-\left(0,5x\right)^2-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-72,25x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40+8,5x\right)\left(x^2-13,5x+40-8,5x\right)=0\)
\(\Leftrightarrow\left(x^2-5x+40\right)\left(x^2-22x+40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+40=0\left(VN\right)\\x^2-22x+40=0\Leftrightarrow\left[{}\begin{matrix}x=20\\x=2\end{matrix}\right.\end{matrix}\right.\)
Câu a,c xem lại đề, cách làm giống câu b, còn câu e giống câu d
b) \(2x^4+5x^3+x^2+5x+2=0\)
Ta nhận thấy x=0 không phải là 1 nghiệm của phương trình, chia cả 2 vế của phương trình cho \(x^2\ne0\), ta được:
\(2x^2+5x+1+\dfrac{5}{x}+\dfrac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)+1=0\)
Đặt \(y=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)
\(\Leftrightarrow2\left(y^2-2\right)+5y+1=0\)
\(\Leftrightarrow2y^2+5y-3=0\)
PT đơn giản, tự giải nha, ta được nghiệm y=1/2 và y=-3
Với y=1/2 thì không tìm được x
Với y=-3 thì tìm được 2 nghiệm, tự giải
mk sữa lại nha , do đánh máy nhanh --> nhầm :((
a) ta có : \(A=x^2+4x+7=\left(x+2\right)^2+3\ge3\)
\(\Rightarrow A_{min}=3\) khi \(x=-2\)
b) ta có : \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow B_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
c) ta có : \(C=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow C_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{-1}{2}\)d) điều kiện xác định : \(x\ge0\)
ta có : \(D=x^2+2\sqrt{x}+4\ge4\)
\(\Rightarrow D_{min}=4\) khi \(x=0\)
e) điều kiện xác định : \(x\ge0\)
ta có : \(E=x+\sqrt{x}+1\ge1\)
\(\Rightarrow E_{min}=1\) khi \(x=0\)g) ta có : \(G=x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow G_{min}=\dfrac{3}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
a) ta có : \(A=x^2+4x+7=\left(x+2\right)^2+3\ge3\)
\(\Rightarrow A_{max}=3\) khi \(x=-2\)
b) ta có : \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow B_{max}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
c) ta có : \(C=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow C_{max}=\dfrac{3}{4}\) khi \(x=\dfrac{-1}{2}\)d) điều kiện xác định : \(x\ge0\)
ta có : \(D=x^2+2\sqrt{x}+4\ge4\)
\(\Rightarrow D_{max}=4\) khi \(x=0\)
e) điều kiện xác định : \(x\ge0\)
ta có : \(E=x+\sqrt{x}+1\ge1\)
\(\Rightarrow E_{max}=1\) khi \(x=0\)g) ta có : \(G=x-\sqrt{x}+1=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow G_{max}=\dfrac{3}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)