Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left(\dfrac{1}{2}x+3\right)\left(x^2-4x-6\right)\)
\(=\dfrac{1}{2}x^3-2x^2-3x+3x^2-12x-18\)
\(=\dfrac{1}{2}x^3+x^2-15x-18\)
2) \(\left(6x^2-9x+15\right)\left(\dfrac{2}{3}x+1\right)\)
\(=4x^3+6x^2-6x^2-9x+10x+15\)
\(=4x^3+x+15\)
3) Ta có: \(\left(3x^2-x+5\right)\left(x^3+5x-1\right)\)
\(=3x^5+15x^2-3x^2-x^4-5x^2+x+5x^3+25x-5\)
\(=3x^5-x^4+5x^3+10x^2+26x-5\)
4) Ta có: \(\left(x-1\right)\left(x+1\right)\left(x-2\right)\)
\(=\left(x^2-1\right)\left(x-2\right)\)
\(=x^3-2x^2-x+2\)
b) \(x^5+x+1=x^5-x^2+x^2+x+1=x^2\left(x^3-1\right)+x^2+x+1=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)
pt: \(\left(\left(x+1\right)\left(x+7\right)\right)\left(\left(x+3\right)\left(x+5\right)\right)=-15\Leftrightarrow\left(x^2+8x+7\right)\left(x^2+8x+15\right)=-15\)
Đặt: \(x^2+8x+11=t\), thay vào pt ta được: \(\left(t-4\right)\left(t+4\right)=-15\Leftrightarrow t^2-16=-15\Leftrightarrow\orbr{\begin{cases}t=-1\\t=1\end{cases}}\)
TH1: t=-1, pt: \(x^2+8x+11=-1\Leftrightarrow x^2+8x+12=0\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-2\end{cases}}\)
TH2: t=1, pt: \(x^2+8x+11=1\Leftrightarrow x^2+8x+10=0\Leftrightarrow\orbr{\begin{cases}x=-4-\sqrt{6}\\x=-4+\sqrt{6}\end{cases}}\)
Vậy x=...
Mình làm mẫu câu a nha
a, pt <=> ( x-2/7 - 1 ) + ( x-1/8 - 1 ) = ( x-4/5 - 1 ) + ( x-3/6 - 1 )
<=> x-9/7 + x-9/8 = x-9/5 + x-9/6
<=> x-9/5 + x-9/6 - x-9/7 - x-9/8 = 0
<=> (x-9).(1/5+1/6-1/9-1/8) = 0
<=> x-9 = 0 ( vì 1/5+1/6-1/9-1/8 > 0 )
<=> x = 9
Vậy x = 9
Tk mk nha
1/ 3-2x+4+6x=x+7+3x
⇔-2x+6x-x-3x=0
⇔0x=0 (Vô số nghiệm)
2/-6(1,5-2x)=3(-15+2x)
⇔-9+12x=-45+6x
⇔6x+36=0
⇔6(x+6)=0
⇔x+6=0
⇔x=-6
Vậy S ϵ {-6}
3/ 3(2x-5)+5(x-1)=4(x+1)
⇔6x-15+5x-5=4x+4
⇔7x=24
⇔x=\(\dfrac{24}{7}\)
Vậy S ϵ {\(\dfrac{24}{7}\)}
1) Ta có: \(3-2x+4+6x=x+7+3x\)
\(\Leftrightarrow4x+7=4x+7\)
\(\Leftrightarrow4x+7-4x-7=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\in R\)}
2) Ta có: \(-6\cdot\left(1.5-2x\right)=3\left(-15+2x\right)\)
\(\Leftrightarrow-9+12x=-45+6x\)
\(\Leftrightarrow12x-9+45-6x=0\)
\(\Leftrightarrow6x+36=0\)
\(\Leftrightarrow6x=-36\)
hay x=-6
Vậy: S={-6}
3) Ta có: \(3\left(2x-5\right)+5\left(x-1\right)=4\left(x+1\right)\)
\(\Leftrightarrow6x-15+5x-5=4x+4\)
\(\Leftrightarrow11x-20-4x-4=0\)
\(\Leftrightarrow7x-24=0\)
\(\Leftrightarrow7x=24\)
\(\Leftrightarrow x=\dfrac{24}{7}\)
Vậy: \(S=\left\{\dfrac{24}{7}\right\}\)
Câu B đây;vừa bị lag
B, \(\frac{x+1}{35}\)+\(\frac{x+3}{33}\)=\(\frac{x+5}{31}\)+\(\frac{x+7}{29}\)
⇔ \(\frac{x+1}{35}\)+1+\(\frac{x+3}{33}\)+1=\(\frac{x+5}{31}\)+1+\(\frac{x+7}{29}\)+1
⇔ \(\frac{x+36}{35}\)+\(\frac{x+36}{33}\)-\(\frac{x+36}{31}\)-\(\frac{x+36}{29}\)=0
⇔ (x+36)(\(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\))=0
Mà \(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\)<0
⇔ x+36=0
⇔ x=-36
Vậy tập nghiệm của phương trình đã cho là:S={-36}
câu C tương tự nhé
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15=0\)\(Dat:x^2+8x+7=a\Rightarrow a\left(a+8\right)+15=0\Leftrightarrow a^2+8a+15=0\Leftrightarrow\left(a+3\right)\left(a+5\right)=0\Leftrightarrow\left[{}\begin{matrix}a=-3\\a=-5\end{matrix}\right.\)\(+,a=-5\Rightarrow x^2+8x+7=-5\Leftrightarrow x^2+8x+16=4\Leftrightarrow\left(x+4\right)^2=4\Rightarrow\left[{}\begin{matrix}x+4=-2\\x+4=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\left(thoaman\right)\\x=2\left(loai\right)\end{matrix}\right.\)\(+,a=-3\Rightarrow x^2+8x+7=-3\Leftrightarrow x^2+8x+16=6\Leftrightarrow\left(x+4\right)^2=6\Leftrightarrow\left[{}\begin{matrix}x+4=-\sqrt{6}\\x+4=\sqrt{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\left(\sqrt{6}+4\right)\left(thoaman\right)\\x=\sqrt{6}-4\left(thoaman\right)\end{matrix}\right.\) \(\Rightarrow x\in\left\{\sqrt{6}-4;-\sqrt{6}-4;-6\right\}\)
1) \(2\left(x+3\right)>5\left(x-1\right)+2\Leftrightarrow2x+6>5x-5+2\Leftrightarrow3x>9\Leftrightarrow x>3\)
2) \(x^2-x\left(x+2\right)>3x-10\)
\(\Leftrightarrow x^2-x^2-2x>3x-10\Leftrightarrow5x< 10\Leftrightarrow x< 2\)
3) \(x\left(x-5\right)< \left(x+1\right)^2\)
\(\Leftrightarrow x^2-5x< x^2+2x+1\Leftrightarrow7x>-1\Leftrightarrow x>-\dfrac{1}{7}\)
4) \(15-2\left(x-7\right)< 2\left(x-3\right)-6\)
\(\Leftrightarrow15-2x+14< 2x-6-6\Leftrightarrow4x>41\Leftrightarrow x>\dfrac{41}{4}\)
1: Ta có: \(2\left(x+3\right)>5\left(x-1\right)+2\)
\(\Leftrightarrow2x+6>5x-5+2\)
\(\Leftrightarrow-3x>-9\)
hay x<3
2: Ta có: \(x^2-x\left(x+2\right)>3x-10\)
\(\Leftrightarrow x^2-x^2-2x>3x-10\)
\(\Leftrightarrow-5x>-10\)
hay x<2
3: Ta có: \(x\left(x-5\right)\le\left(x+1\right)^2\)
\(\Leftrightarrow x^2-5x-x^2-2x-1\ge0\)
\(\Leftrightarrow-7x\ge1\)
hay \(x\le-\dfrac{1}{7}\)