Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)-3\)
\(=x\left(x-3\right)\left(x-1\right)\left(x-2\right)-3\)
\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)
Đặt \(x^2-3x+1=t\)
\(=\left(t-1\right)\left(t+1\right)-3\)
\(=t^2-1-3=t^2-4\)
\(=\left(t-2\right)\left(t+2\right)\)
\(=\left(x^2-3x+1-2\right)\left(x^2-3x+1+2\right)\)
\(=\left(x^2-3x-1\right)\left(x^2-3x+3\right)\)
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu a nhé!
=4(x+5)(x+6)(x+10)(x+12)-3x^2
=4[(x+5)(x+12)][(x+6)(x+10)]-3x^2
=4(x^2+17x+60)(x^2+16x+60)-3x^2
đặt x^2+16x+60=y
=>4(y+x)y-3x^2
=4y^2+4yx-3x^2
=4y^2-2yx+6yx-3x^2
=2y(2y-x)+3x(2y-x)
=(2y-x)(2y+3x)
thay y=x^2+16x+60
=>(2x^2+32x+120-x)(2x^2+32x+120+3x)
=(2x^2+16x+15x+120)(2x^2+35x+120)
=2x(x+8)+15(x+8)(2x^2+35x+120)
=(x+8)(2x+15)(2x^2+35x+120)
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
d) \(F=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)(1)
Đặt \(x^2+x+1=t\)
\(\Rightarrow\left(1\right)=t\left(t+1\right)-12=t^2+t-12\)
\(=t^2+4t-3t-12\)
\(=t\left(t+4\right)-3\left(t+4\right)=\left(t-3\right)\left(t+4\right)\)(2)
Mà \(x^2+x+1=t\)(ẩn phụ)
Nên \(\left(2\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
c) \(E=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)
Đặt \(x^2+7x+10=t\)
\(\Rightarrow\left(1\right)=t\left(t+2\right)-24=t^2+2t-24\)
\(=t^2+6t-4t-24\)
\(=t\left(t+6\right)-4\left(t+6\right)=\left(t-4\right)\left(t+6\right)\)(2)
Mà \(x^2+7x+10=t\)(ẩn phụ)
Nên \(\left(2\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
Ta có : (x+2)(x+4)(x+6)(x+8) + 16
=[(x+2).(x+8)].[(x+4)(x+6)]+16
=(x2+10x+16).(x2+10x+24)+16 (1)
Đặt x^2+10x+16=a thì (1) trở thành:
a.(a+8)+16=a2+8a+16=(a+4)2=(x^2+10x+20)2
\(\left(x+1\right)\left(x+3\right)\left(x+4\right)\left(x+6\right)-7\)
\(=\left(x+1\right)\left(x+6\right)\left(x+3\right)\left(x+4\right)-7\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+12\right)-7\)
Đặt \(x^2+7x+9=t\)
\(=\left(t-3\right)\left(t+3\right)-7\)
\(=t^2-9-7=t^2-16=\left(t-4\right)\left(t+4\right)\)
\(=\left(x^2+7x+9-4\right)\left(x^2+7x+9+4\right)\)
\(=\left(x^2+7x+5\right)\left(x^2+7x+13\right)\)