Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + 1 + x + 2 + ... + x + 98 + x + 99 = 9900
( x + x + ... + x ) + ( 1 + 2 + ... + 98 + 99 ) = 9900
Số số hạng là : ( 99 - 1 ) : 1 + 1 = 99 ( số )
Tổng là : ( 99 + 1 ) x 99 : 2 = 4950
99x + 4950 = 9900
99x = 4950
x = 50
Vậy,......
( x + 1 ) + ( x + 2 ) + ... + ( x + 98 ) + ( x + 99 ) = 9900
( x + x + ... + x + x ) + ( 1 + 2 + ... + 98 + 99 ) = 9900
99.x + \(\frac{\left(99+1\right).99}{2}\)= 9900
99.x + 4950 = 9900
99.x = 9900 - 4950
99.x = 4950
x = 4950 : 99
x = 50
2 . x + 5 . x - 3 . x = 125 : 4 + 27 : 3
x . ( 2 + 5 - 3 ) = 31,25 + 9
x . 4 = 40,25
x = 40,25 : 4
x = 10,0625
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+99\right)=9900\)
\(\Leftrightarrow99x+\left(\frac{99-1}{1}+1\right)=9900\)
\(\Leftrightarrow99x=9900-99\)
\(\Leftrightarrow x=99\)
k mk nha
(x + 1) +( x + 2) + ... + (x + 99 )= 9900
=>99x +(99-1/1 + 1 )=9900
=>99x=9900-99
=>x=90
ấn chậm quá
@@
nhờ sự hỗ trợ của máy tính ý
#mã mã#
2S=1x2x3+2x3x3+3x4x3+...+98x99x3+99x100x3
3S=1x2x3+2x3x(4-1)+3x4x(5-2)+...+98x99x(100-97)+99x100x(101-98)
3S=1x2x3-1x2x3+2x3x4-2x3x4+3x4x5-...-97x98x99+98x99x100-98x99x100+99x100x101=99x100x101
S=33x100x101=333300
3xS = 1x 2x 3 + 2x3x3 + 3x4x3 + ...+ 98x99x3 + 99x100x3
= 1x2x3 + 2x3x(4-1) + 3x4x(5-2) +...+98x99x(100-97) + 99x100x(101-98)
= 1x2x3 -1x2x3 + 2x4x4 -2x3x4 + 3x4x5 +...- 97x98x99 +98x99x100 -98x99x199 + 99x100x101
= 99x100x101 = 999900
=> S = 999900 : 3 =333300
= 1/1x2 + 1/2x3 + 1/3x4 ...... +1/9x10
= 1-1/2+1/2-1/3+1/3-1/4+........+1/9-1/10
=1-1/10=9/10
đặt A=1/1 x 1/2 + 1/2 x 1/3 + 1/3 + 1/4 + .......... + 1/9 x 1/10
\(A=\frac{1}{1}\cdot\frac{1}{2}+\frac{1}{2}\cdot\frac{1}{3}+...+\frac{1}{9}\cdot\frac{1}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
đặt B=2/1 x 2 + 2/2 x 3 + 2/3 x4 + .............. + 2/98 x 99 + 2/99 x 100
\(B=2\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2\left(1-\frac{1}{100}\right)\)
\(=2\times\frac{99}{100}\)
\(=\frac{99}{50}\)
(x+1)+(x+2)+...+(x+98)+(x+99)=9900
x+x+x+x+...x+(1+2+...+98+99)=9900
50x+2500=9900
=>50x=7400
vậy x=148