K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi m=1 thì pt sẽ là x^2-6x+5=0

=>x=1; x=5

b: Khi x=-2 thì pt sẽ là;

(-2)^2+2(m+5)-m+6=0

=>2m+10-m+6+4=0

=>m=-20

c: =>x1x2(x1+x2)=24

=>(-m+6)(m+5)=24

=>-m^2-5m+6m+30-24=0

=>-m^2+m+6=0

=>m^2-m-6=0

=>m=3; m=-2

18 tháng 6 2023

a)

Thế m = 1 vào phương trình được: \(x^2-\left(1+5\right)x-1+6=x^2-6x+5=0\)

nhẩm nghiệm a + b + c = 0 ( 1 - 6 + 5 = 0) nên \(x_1=1,x_2=\dfrac{c}{a}=5\)

Vậy hệ phương trình có tập nghiệm \(S=\left\{1;5\right\}\)

b)

Phương trình có nghiệm x = -2 

=> \(\left(-2\right)^2-\left(m+5\right).\left(-2\right)-m+6=0\)

<=> \(4+2m+10-m+6=0\)

<=> \(m+20=0\Rightarrow m=-20\)

c) Tìm các giá trị của m để phương trình có 2 nghiệm hay 2 nghiệm phân biệt ... ?

4 tháng 9 2020

Cám ơn b rất nhiều

NV
4 tháng 9 2020

\(D=2\left(sin^2x+cos^2x\right)\left(sin^4x+cos^4x-sin^2x.cos^2x\right)-3\left(sin^4x+cos^4x\right)\)

\(=2\left(sin^4x+cos^4x\right)-2sin^2x.cos^2x-3\left(sin^4x+cos^4x\right)\)

\(=-\left(sin^4x+2sin^2x.cos^2x+cos^4x\right)\)

\(=-\left(sin^2x+cos^2x\right)^2=-1\)

23 tháng 2 2022

Ta có:\(\Delta=9^2-4.1.\left(-13\right)=81+52=133>0\)

\(\Rightarrow\) Pt luôn có 2 nghiệm phân biệt

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-9\\x_1x_2=-13\end{matrix}\right.\)

\(x^2_1x_2+x_1x^2_2=x_1x_2\left(x_1+x_2\right)=\left(-13\right)\left(-9\right)=117\)

AH
Akai Haruma
Giáo viên
31 tháng 1 2023

Bài 1:
$2x^4-3x^2-5=0$

$\Leftrightarrow (2x^4+2x^2)-(5x^2+5)=0$

$\Leftrightarrow 2x^2(x^2+1)-5(x^2+1)=0$
$\Leftrightarrow (x^2+1)(2x^2-5)=0$

$\Leftrightarrow 2x^2-5=0$ (do $x^2+1\geq 1>0$ với mọi $x\in\mathbb{R}$)

$\Leftrightarrow x^2=\frac{5}{2}$

$\Leftrightarrow x=\pm \sqrt{\frac{5}{2}}$

AH
Akai Haruma
Giáo viên
31 tháng 1 2023

Bài 2:

a. Khi $m=1$ thì pt trở thành:

$x^2-6x+5=0$

$\Leftrightarrow (x^2-x)-(5x-5)=0$

$\Leftrightarrow x(x-1)-5(x-1)=0$
$\Leftrightarrow (x-1)(x-5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$

$\Leftrightarrow x=1$ hoặc $x=5$

b.

Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta=(m+5)^2-4(-m+6)\geq 0$

$\Leftrightarrow m^2+14m+1\geq 0(*)$

Áp dụng định lý Viet:

$x_1+x_2=m+5$
$x_1x_2=-m+6$

Khi đó:
$x_1^2x_2+x_1x_2^2=18$

$\Leftrightarrow x_1x_2(x_1+x_2)=18$

$\Leftrightarrow (m+5)(-m+6)=18$

$\Leftrightarrow -m^2+m+12=0$
$\Leftrightarrow m^2-m-12=0$

$\Leftrightarrow (m+3)(m-4)=0$

$\Leftrightarrow m=-3$ hoặc $m=4$

Thử lại vào $(*)$ thấy $m=4$ thỏa mãn.

 

c) \(\left(2\sqrt{x}+1\right)^2=4x+4\sqrt{x}+1\)

21 tháng 4 2019

Tớ đặt x1=a, x2=b cho dễ nhé

A=a^4+b^4 
=(a^4+2.a²b²+b^4)-2.a²b² 
=(a²+b²)²-.(√2.a.b)² 
=(a²-√2.a.b+b²)(a²+√2.a.b+b²) 

Có phải là phân tích đa thức thành nhân tử ko z

4 tháng 9 2019

Bài này toán 8, em ấn nhầm:v

12 tháng 5 2017

27 tháng 11 2018