\(x+1=\sqrt{x^2-4x+1}=3\sqrt{x}\)

giúp tớ với ạ

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2018
mấy bài này bn đặt ẩn phụ là ra
17 tháng 10 2018

cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~

27 tháng 10 2019

a) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x-1\right|+\left|x-3\right|\ge\left|\left(x-1\right)+\left(3-x\right)\right|=2\)

Vậy\(A_{min}=2\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)

\(TH1:\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow1\le x\le3\)

\(TH1:\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\left(L\right)\)

Vậy \(A_{min}=2\Leftrightarrow1\le x\le3\)

19 tháng 9 2019

cái này có phải bình phương hai vế nên ko nhỉ?

19 tháng 9 2019

Câu 6 có sai ko?

12 tháng 9 2017

mọi người giúp mình với ạ,mai mình phải nộp rồi nhưng kô biết làm .Mong mn giúp đỡ!!!

5 tháng 10 2017

Bài dễ mà :
a, \(\sqrt{x+5}=x+15 \)
\(x+5=x^2+30x+225\)
\(x^2+29x+220=0\)
\(\left(x+14,5\right)^2+9,75=0\)
pt vô nghiệm

10 tháng 8 2019

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

    \(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

    \(=2x-1+2x-3\)

    \(=4x-4\)

Làm nốt

14 tháng 8 2020

b) Đk: \(0\le x\le4\)

Ta có: \(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\)

<=> \(\left(\sqrt{4x+x^2}+\sqrt{4x-x^2}\right)^2=\left(4x+1\right)^2\)

<=> \(\left|4x+x^2\right|+\left|4x-x^2\right|+2\sqrt{\left(4x+x^2\right)\left(4x-x^2\right)}=16x^2+8x+1\)

<=> \(x^2+4x+4x-x^2+2x\sqrt{\left(4-x\right)\left(4+x\right)}=16x^2+8x+1\)

<=> \(2x\sqrt{16-x^2}=16x^2+8x+1-8x\)

<=> \(\left(2x\sqrt{16-x^2}\right)^2=\left(16x^2+1\right)^2\)

<=> \(4x^2\left|16-x^2\right|=256x^4+32x^2+1\)

<=> \(64x^2-4x^4=256x^4+32x^2+1\)

<=> \(260x^4-32x^2+1=0\)

Đặt x2 = k (k > 0) <=> 260k2 - 32k + 1 = 0

Ta có: \(\Delta=32^2-4.260=-16< 0\)

=> pt vô nghiệm

14 tháng 8 2020

\(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\) đk: \(0\le x\le4\)

\(\Leftrightarrow4x+x^2+4x-x^2+2\sqrt{16x^2-x^4}=16x^2+8x+1\)

\(2\sqrt{16x^2-x^4}=16x^2+1\)

\(\Leftrightarrow64x^2-4x^4=256x^4+32x^2+1\)

\(\Leftrightarrow260x^2-32x^2+1=0\)

=> Vo nghiem

15 tháng 8 2017

1)\(\sqrt{9\left(x-1\right)}=21\Leftrightarrow3\sqrt{x-1}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow\hept{\begin{cases}7\ge0\\x-1=49\end{cases}\Leftrightarrow x=50}\)

17 tháng 9 2017

no no no