Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\Rightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
2) \(\Rightarrow5\left(x-2\right).3\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
3) \(\Rightarrow2\left(x-4\right)\left(x-7\right)=0\Rightarrow\left[{}\begin{matrix}x=4\\x=7\end{matrix}\right.\)
\(\left(x+4\right)\left(3x-6\right)=0\)
\(\Rightarrow\left(x+4\right)\cdot3\cdot\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-4;2\right\}\).
a,\(\frac{1}{3}x=-2-\frac{2}{3}=\frac{-8}{3}\)
\(x=\frac{-8}{3}:\frac{1}{3}=\frac{-8}{3}.\frac{3}{1}=-8\)
\(b,\left[x+\frac{1}{1}\right]^2+\frac{5}{6}=\frac{7}{8}\)
\(\Rightarrow\left[x+1\right]^2=\frac{7}{8}-\frac{5}{6}\)
\(\Rightarrow\left[x+1\right]^2=\frac{7\cdot3}{24}-\frac{5\cdot4}{24}\)
\(\Rightarrow\left[x+1\right]^2=\frac{21}{24}-\frac{20}{24}\)
\(\Rightarrow\left[x+1\right]^2=\frac{1}{24}\)
\(\Rightarrow x\in\left\{\varnothing\right\}\)
a) ( x + 4 ) ( 2x - 4 ) < 0
\(\Rightarrow\hept{\begin{cases}x+4< 0\\2x-4>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+4>0\\2x-4< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< -4\\2x>4\end{cases}}\) hoặc \(\hept{\begin{cases}x>-4\\2x< 4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< -4\\x>2\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>-4\\x< 2\end{cases}}\)
\(\Rightarrow\) - 4 < x < 2
Vậy - 4 < x < 2
@@ Học tốt
a) (x+4)(2x-4)<0
=>x+4 và 2x-4 là 2 số nguyên khác dấu
TH1 : x+4<0 =>x<0-4 =>x<-4
2x-4>0 =>2x>4 =>x>2
=> 2<x<-4 (vô lí )
( LOẠI )
TH2: x+4>0 => x>0-4 =>x>-4
2x-4<0 => 2x< 4 =>x<2
=> -4<x<2
=> x thuộc { -3;-2;-1;0;1}
Vậy x thuộc { -3;-2;-1;0;1 }
Ý b bạn tự làm nhé
`@` `\text {Ans}`
`\downarrow`
`1/3x^3 - 3x = 0`
`=> x(1/3x^2 - 3) = 0`
`=>`\(\left[{}\begin{matrix}x=0\\\dfrac{1}{3}x^2-3=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\\dfrac{1}{3}x^2=3\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x^2=3\div\dfrac{1}{3}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x^2=\left(\pm3\right)^2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)
Vậy, `x \in {0; 3; -3}.`
\(\dfrac{1}{3}x^3-3x=0\Rightarrow\dfrac{1}{3}x\left(x^2-9\right)=0\)
\(\Rightarrow x=0\) hay \(x^2-9=0\)
\(\Rightarrow x=0\) hay \(x^2=9=3^2\)
\(\Rightarrow x=0\) hay \(x=\pm3\)
\(-\frac{1}{4}x+\frac{3}{2}x-\frac{2}{3}x+6=\)\(0\)
\(\Rightarrow\)\(-\frac{1}{4}x+\frac{3}{2}x-\frac{2}{3}x\)\(=-6\)
\(\Rightarrow\)\(x\left(-\frac{1}{4}+\frac{3}{2}-\frac{2}{3}\right)\)\(=-6\)
\(\Rightarrow\)\(x.\frac{7}{12}\)\(=-6\)
\(\Rightarrow\)\(x\)\(=-\frac{72}{7}\)
\(\text{Học tốt!!!}\)
\(\left(3x+\dfrac{3}{5}\right)\left(\left|x\right|-\dfrac{1}{4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{3}{5}=0\\\left|x\right|=\dfrac{1}{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=\dfrac{1}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{1}{5};\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
⇒\(\left\{{}\begin{matrix}3x+\dfrac{3}{5}=0\\\left|x\right|-\dfrac{1}{4}=0\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}3x=0-\dfrac{3}{5}=-\dfrac{3}{5}\\\left|x\right|=0+\dfrac{1}{4}=\dfrac{1}{4}\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}x=-\dfrac{3}{5}:3=-\dfrac{1}{5}\\x=\dfrac{1}{4},-\dfrac{1}{4}\end{matrix}\right.\)
\(\left(-3x+2\right)-\left(5-3x\right)=-3\)
\(\Rightarrow-3x+2-5+3x=-3\)
\(\Rightarrow-3x+3x=-3+5-2\)
\(\Rightarrow0x=0\Rightarrow x\in Z\)
\(3+x-\left(3x-1\right)=6-2x\)
\(\Rightarrow3+x-3x+1=6-2x\)
\(\Rightarrow x-3x+2x=6-1-3\)
\(\Rightarrow0x=2\left(loại\right)\)
\(\left(x-5\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-\frac{4}{3}\end{cases}}}\)
\(7x\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}7x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
\(\left(3x-1\right)2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=0\end{cases}}}\)
Vì (x+1).(6-3x)=0
=> x+1 = 0 hoặc 6-3x =0
TH1: x+1=0
=> x = -1
TH2: 6-3x =0
3x =6
=> x = 2
Vậy x thuộc {-1:2}
\(\left(x+1\right)\left(6-3x\right)=0\)
\(TH1:x+1=0\)
\(\Rightarrow x=0-1=-1\)
\(TH2:6-3x=0\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=6:3=2\)
Vậy \(x\in\left\{-1;2\right\}\)