Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x/2+x+x/3+x+x+x/4=5 3/4`
`=>3x+x/2+x/3+x/4=23/4`
`=>49/12x=23/4`
`=>x=69/49`
Vậy `x=69/49`
\(x^{15}=x.1\)
\(\Rightarrow x^{15}=x\)
\(TH1\)
\(x=0\)
\(\Rightarrow0^{15}=0\)
\(\Rightarrow1=0\)(Vô lí)
\(TH2\)
\(x\ge2\)
\(Cho\) \(x=2\)
\(\Rightarrow2^{15}=2\)(Vô lí)
\(TH3\)
\(x=1\)
\(\Rightarrow1^{15}=1\)
\(\Rightarrow1=1\)(t/m)
Vậy x=1
x¹⁵ = x.1
x¹⁵ = x
x¹⁵ - x = 0
x.(x¹⁴ - 1) = 0
x = 0 (nhận) hoặc x¹⁴ - 1 = 0
*) x¹⁴ - 1 = 0
x¹⁴ = 0 + 1
x¹⁴ = 1
x = 1 (nhận) hoặc x = -1 (loại)
Vậy x = 0; x = 1
Theo đề trước `=5 3/4`
`x/2+(x+x)/3+(x+x+x)/4=5 3/4`
`=>x/2+(2x)/3+(3x)/4=23/4`
`=>(6x)/2+(8x)/12+(9x)/12=23/4`
`=>(23x)/12=23/4`
`=>x=23/4:23/12=3`
Vậy `x=3`
(\(x\) - 2,5) \(\times\) 8 = \(x\) \(\times\) 6 - 4
8\(x\) - 20 = 6\(x\) - 4
8\(x\) - 6\(x\) = 20 - 4
2\(x\) = 16
\(x\) = 16 : 2
\(x\) = 8
\(2xy-x-y=2\\ \Rightarrow x\left(2y-1\right)-y=2\\ \Rightarrow2x\left(2y-1\right)-2y+1=4+1\\ \Rightarrow2x\left(2y-1\right)-\left(2y-1\right)=5\\ \Rightarrow\left(2x-1\right)\left(2y-1\right)=5\)
Ta có bảng:
2x-1 | -5 | -1 | 1 | 5 |
2y-1 | -1 | -5 | 5 | 1 |
x | -2 | 0 | 1 | 3 |
y | 0 | -2 | 3 | 1 |
Vậy \(\left(x,y\right)\in\left\{\left(-2;0\right);\left(0;-2\right);\left(1;3\right);\left(3;1\right)\right\}\)
\(4^{x+3}+4^{x+2}+4^{x+1}+4^x=5440\)
\(\Rightarrow4^x.4^3+4^x.4^2+4^x.4+4^x=5440\)
\(\Rightarrow4^x\left(4^3+4^2+4+1\right)=5440\)
\(\Rightarrow4^x.\left(64+16+4+1\right)=5440\)
\(\Rightarrow4^x.85=5440\)
\(\Rightarrow4^x=5440:85\)
\(\Rightarrow4^x=64=4^3\)
\(\Rightarrow x=3\)
dễ quá bạn ơi giải câu này nè mới chất
Q= 12 + 22 + 32 +...+ 1002
\(x+4⋮2x+1\)
=>\(2x+8⋮2x+1\)
=>\(2x+1+7⋮2x+1\)
=>\(7⋮2x+1\)
=>\(2x+1\in\left\{1;-1;7;-7\right\}\)
=>\(2x\in\left\{0;-2;6;-8\right\}\)
=>\(x\in\left\{0;-1;3;-4\right\}\)
Ta có:
(x + 4) ⋮ (2x + 1)
⇒ 2(x + 4) ⋮ (2x + 1)
⇒ (2x + 8) ⋮ (2x + 1)
⇒ (2x + 1 + 7) ⋮ (2x +1)
⇒ 7 ⋮ (2x + 1)
⇒ 2x + 1 ∈ Ư(7) = {-7; -1; 1; 7}
⇒ 2x ∈ {-8; -2; 0; 6}
⇒ x ∈ {-4; -1; 0; 3}
\(2xy+x+2y=13\\ \Rightarrow2xy+x+2y+1-1=13\\ \Rightarrow\left(2xy+2y\right)+\left(x+1\right)=13+1\\ \Rightarrow2y\left(x+1\right)+\left(x+1\right)=14\\ \Rightarrow\left(x+1\right)\left(2y+1\right)=14\\ \Rightarrow\left(x+1\right);\left(2y+1\right)\inƯ\left(14\right)\\ \Rightarrow\left(x+1\right);\left(2y+1\right)\in\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
\(x+1\) | \(-14\) | \(-7\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(7\) | \(14\) |
\(2y+1\) | \(-1\) | \(-2\) | \(-7\) | \(-14\) | \(14\) | \(7\) | \(2\) | \(1\) |
\(x\) | \(-15\) | \(-8\) | \(-3\) | \(-2\) | \(0\) | \(1\) | \(6\) | \(13\) |
\(y\) | \(-1\) | \(-\dfrac{3}{2}\) | \(-4\) | \(-\dfrac{15}{2}\) | \(\dfrac{13}{2}\) | \(3\) | \(\dfrac{1}{2}\) | \(0\) |
Vì \(x,y\in N\Rightarrow\left(x;y\right)=\left(0;\dfrac{13}{2}\right),\left(1;3\right),\left(6;\dfrac{1}{2}\right),\left(13;0\right)\)
Vậy \(\left(x;y\right)=\left(0;\dfrac{13}{2}\right),\left(1;3\right),\left(6;\dfrac{1}{2}\right),\left(13;0\right)\)
\(\Rightarrow x-1\in\left\{\pm1;\pm17\right\}\Rightarrow x\in\left\{-16;0;2;18\right\}\)
17 là bội x-1
\(\Rightarrow\left(x-1\right)\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
\(\Rightarrow x\in\left\{-16;0;2;18\right\}\)
\(x^{15}=x\\\Rightarrow x^{15}-x=0\\\Rightarrow x(x^{14}-1)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{14}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{14}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy: \(x\in\left\{0;1;-1\right\}\)
x¹⁵ = x
x¹⁵ - x = 0
x.(x¹⁴ - 1) = 0
x = 0 hoặc x¹⁴ - 1 = 0
*) x¹⁴ - 1 = 0
x¹⁴ = 1
x = 1 hoặc x = -1
Vậy x = 0; x = -1; x = 1