
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Để x2+(y-1/10)4=0 thì:
X2 và (y-1/10)4 có kết quả là 2 số đối nhau
mà 2 lũy thừa trên đều bậc chẵn
=> X2 và (y-1/10)4 ko có kết quả là 2 số đối nhau
=> TH1 (loại)
=> x2=0; (y-1/10)4=0
<=> x2=02
<=> x=0
=> (y-1/10)4=0
<=>(y-1/10)4=04
<=>y-1/10=0
<=>y=0+1/10
<=>y=1/10
Vậy x=0;y=1/10
Phần b mình ko biết, bạn tự tìm nhé bạn

haiz` khó phết đấy chứ k phải dễ đâu m` là HSG lớp 8 mà ko hiểu j cả ~~~
Nếu đây là câu lớp 8 thì dễ hơn, biến đổi ra hằng đẳng thức là được

Câu 1:
1)B.\(-3xy\)
2)A.\(\frac{-5}{9}x^2y\) và B.\(\frac{x}{y}\)
3)C.\(\frac{2}{xy}\) và D.\(-5\)
4)C.\(9^2yz\)
Câu 2:
1)C.\(7+2x^2y\)
2)A.\(2+5xy^2\) và D.\(\left(x+2y\right)z\)
3)A.\(5-x\) và D.\(-35.5\)
4)A.\(13.3\) và B.\(\left(5-9x^2\right)y\)
Câu 3:A.Phần hệ số:2,5;phần biến:\(x^2y\)
Câu 4:B.\(-2,5\)
Câu 5:A.\(-\frac{1}{2}x^6y^6\) ,bậc bằng 12
Câu 6:B.Hệ số:-243,bậc bằng 10
Nhớ tick cho mình nha!
nhìn có vẻ không rõ nên các bạn ráng giúp mình nha!!!!

1.
\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)
\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)
\(=2x^5y^4-4x^2y^3\)
2.
\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)
\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)
\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)
3.
\(5x-7xy^2+3x-\frac{1}{2}xy^2\)
\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)
\(=8x-\frac{15}{2}xy^2\)
4.
\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)
\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)
\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)
5.
\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)
\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)
\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)
6.
\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)
\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)

1 )
a) f(x) + g(x) = (x2-5+x3-x ) + ( x+x4-4+x2)
= x2-5+x3-x + x+ x4-4 +x2
=( x2+x2) + (-5-4)+ x3+(-x+x)+x4
= 2x2 -9 + x3 + x4
= x4+x3+2x2-9
b) Có : g(x)-f(x)=h(x )
=> f(x) = g(x) - h(x)
Tiếp theo bn tự tính như phần a nhé
c ) Thay x=-1 , y=-1 vào đa thức rồi bn tự tính nhé ! dễ mà

a,-200 x10 t10z3
b,\(\frac{-5}{4}\)x11 y5 z4
c,\(\frac{2}{15}\)x6 y6 z9
d,\(\frac{1}{7}\)x10 y6 z7
e,-4z6 y10 z6

Bài 1 :
a/ \(x^2-7x+6=0\)
\(\Leftrightarrow x^2-6x-x+6=0\)
\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
Vậy....
b/ \(x^2-10x+9=0\)
\(\Leftrightarrow x^2-9x-x+9=0\)
\(\Leftrightarrow x\left(x-9\right)-\left(x-9\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-9=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)
Vậy...
c/ \(x^2+9x+8=0\)
\(\Leftrightarrow x^2+8x+x+8=0\)
\(\Leftrightarrow\left(x+8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=-1\end{matrix}\right.\)
Vậy ...
d/ \(x^2-11x+10=0\)
\(\Leftrightarrow x^2-11x+10=0\)
\(\Leftrightarrow x^2-x-10x+10=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=10\end{matrix}\right.\)
Vậy...
Bài 2 :
Ta có :
\(\frac{2x-y}{x+y}=\frac{2}{3}\)
\(\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Leftrightarrow6x-3y=2x+2y\)
\(\Leftrightarrow6x-2x=2y+3y\)
\(\Leftrightarrow4x=5y\)
\(\Leftrightarrow\frac{x}{y}=\frac{5}{4}\)
Vậy....
Bài 3 : không hiểu đề lắm ???!!!!
Bài 4 :
Ta có :
\(\frac{x}{y^2}=2\Leftrightarrow x=2y^2\left(1\right)\)
Thay (1) ta có :
\(\frac{x}{y}=16\)
\(\Leftrightarrow\frac{2y^2}{y}=16\)
\(\Leftrightarrow2y=16\)
\(\Leftrightarrow y=8\Leftrightarrow x=128\)
Vậy...
con cảm ơn cô ạ!
(\(x+1,5)^2\) + (y - 2,5)\(^{10}\) = 0
Vì: (\(x+1,5\))\(^2\) ≥ 0; (y - 2,5)\(^{10}\) ≥ 0
Vậy (\(x+1,5)^2\) + (y - 2,5)\(^{10}\) = 0 khi và chỉ khi:
\(\begin{cases}\left(x+1,5\right)^2=0\\ \left(y-2,5\right)^{10}=0\end{cases}\)
\(\begin{cases}x+1,5=0\\ y-2,5=0\end{cases}\)
\(\begin{cases}x=-1,5\\ y=2,5\end{cases}\)
Vậy (\(x;y\)) = (-1,5; 2,5)