K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)

x=7 nen x+1=8

\(A=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-...+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+...+x^4+x^3-x^3-x^2+x^2+x-5\)

=x-5

=2

6 tháng 9 2017

Từ \(x=7\Rightarrow x+1=8\) thay vào B ta được :

\(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+......-x^3-x^2+x^2+x-5\)

\(=x-5=7-5=2\)

Vậy B = 2

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)

19 tháng 8 2015

a, S= 2+2^2+2^3+....+2^2001+2^2002

      = (2+2^2)+(2^3+2^4)+...+(2^2001+2^2002)

      = (2+2^2)+2^2.(2+2^2)+...+2^2000.(2+2^2)

     = (2+2^2). (1+2^2+...+2^2000)

      = 6. (1+2^2+...+2^2000) chia hết cho 6 (ĐPCM)

Làm bạn với mình đi!

14 tháng 4 2018

Ta có : \(x=7\Rightarrow\left\{{}\begin{matrix}8=x+1\\5=x-2\end{matrix}\right.\)

\(\Rightarrow B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\\ \\ =x^{15}-\left(x+1\right)x^{14}+...+\left(x+1\right)x-\left(x-2\right)\\ \\=x^{15}-x^{15}-x^{14}+...+x^2+x-x+2\\ \\=2\)

21 tháng 2 2016

Đặt  \(A=x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)

Vì  \(x=7\)  \(\Rightarrow\)  \(x+1=8\)   \(\left(\text{*}\right)\)

Thay \(\left(\text{*}\right)\)  vào  \(A\), ta được:

\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

      \(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)

\(A=x-5\)

Tại  \(x=7\)  thì khi đó,   \(A=7-5=2\)

Vậy,  giá trị cua biểu thức  \(x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)  là  \(2\)

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)

13 tháng 6 2018

x=7=>x+1=8

B=x15-8x14+8x13-8x12+....-8x2+8x-5

=x15-(x+1)x14+(x+1)x13-(x+1)x12+...-(x+1)x2+(x+1)x-5

=x15-x15-x14+x14+x13-x13+x12+...-x3-x2+x2+x-5

=x-5

=7-5

=2

Vậy B=2

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)

7 tháng 6 2020

Ta có B = 715 - 8.714 + 8.713 - 8.712 + ... - 8.72 + 8.7 – 5 

             = 715 - 8.(714 - 713 + 712 - .... + 72 - 7) - 5

Đặt C = 714 - 713 + 712 - .... + 72 - 7

=> 7C = 715 - 714 + 713 - .... + 73 - 72

Lấy 7C cộng C theo vế ta có : 

7C + C = ( 715 - 714 + 713 - .... + 73 - 72) + (714 - 713 + 712 - .... + 72 - 7)

  8C = 715 - 7

=> C = \(\left(7^{15}-7\right).\frac{1}{8}\)

Khi đó B = \(7^{15}-8.\left(7^{15}-7\right).\frac{1}{8}-5=7^{15}-7^{15}+7-5=2\)

14 tháng 8 2020

Ta có: \(x=7\)\(\Rightarrow x+1=8\)

\(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-........-\left(x+1\right)x^2+\left(x+1\right)x-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-......-x^3-x^2+x^2+x-5\)

\(=x-5=7-5=2\)

14 tháng 8 2020

Với x = 7 ta có 8 = x + 1

Thay 8 = x + 1 vào biểu thức B ta có  \(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

   \(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-5\)

   \(=x-5\)

  Thay x = 7 vào biểu thức B đã thu gọn ta được B = 7 - 5 = 2

   Vậy B = 2