Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{X\left(X+2\right)}\)
\(\frac{1}{2}.\left(\frac{1}{1.3}+...+\frac{1}{X\left(X+2\right)}\right)\)= \(\frac{16}{34}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{X}-\frac{1}{X+2}\right)\)
=15
TA CÓ : 1/1.3 + 1/3.5 + 1/5.7 +... + 1/X(X+2) = 8/17
=> 2/1.3 + 2/3.5 + 2/5.7 +... + 2/X(X+2) = 8/17 . 2 = 16/17
<=> 1 - 1/X+2 = 16/17
X+2/X+2 - 1/X+2 = 16/17
X+2 -1/X+2 = 16/17
=> X+2 -1 =16 VÀ X+2 = 17
=> X = 15
\(\left[\frac{12}{11}-\left(\frac{1}{2}+\frac{1}{44}\right)\right].\left(x-0,2\right)=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{25}{44}.\left(x-0,2\right)=\frac{1}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{9.11}\right)\)
\(x-0,2=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right):\frac{25}{44}\)
\(x-\frac{1}{5}=\frac{22}{25}.\left(1-\frac{1}{11}\right)=\frac{22}{25}.\frac{10}{11}=\frac{4}{5}\)
\(x=\frac{4}{5}+\frac{1}{5}\)
\(x=1\)
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{x\left(x+2\right)}=\dfrac{8}{17}\)
\(\Rightarrow\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}\right)=\dfrac{8}{17}\)
\(\Rightarrow\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{8}{17}\)
\(\Rightarrow\dfrac{1}{2}\left(1-\dfrac{1}{x+2}\right)=\dfrac{8}{17}\)
\(\Rightarrow1-\dfrac{1}{x+2}=\dfrac{8}{17}:\dfrac{1}{2}=\dfrac{16}{17}\)
\(\Rightarrow\dfrac{1}{x+2}=1-\dfrac{16}{17}=\dfrac{1}{17}\)
\(\Rightarrow x+2=17\rightarrow x=15\)
Vậy x = 15
Số tự nhiên x thỏa mãn 1/1.3+1/3.5+1/5.7+...+1/X(X+2)=16/34 là 15.
\(\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{x\left(x+2\right)}=\frac{16}{34}\)
\(\frac{1}{2}.\left(\frac{1}{1.3}+....+\frac{1}{x\left(x+2\right)}\right)=\frac{16}{34}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+.....+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{16}{34}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{x+2}\right)=\frac{16}{34}\)
\(\frac{1}{1}-\frac{1}{x+2}=\frac{16}{34}:\frac{1}{2}\)
\(\frac{1}{1}-\frac{1}{x+2}=\frac{16}{17}\)
\(\frac{1}{x+2}=\frac{1}{1}-\frac{16}{17}=\frac{1}{17}\Rightarrow x+2=17\Rightarrow x=15\)
A\(A=\frac{1}{1.3}+..+\frac{1}{x\left(x+1\right)}\)
\(2A=\frac{1}{1}-\frac{1}{\left(x+1\right)}\)
\(A=\frac{x}{2.\left(x+1\right)}=\frac{8}{17}=\frac{16}{2.17}\)
X=16
A = \(\dfrac{x}{1.3}\) + \(\dfrac{x}{3.5}\) + \(\dfrac{x}{5.7}\) +......+\(\dfrac{x}{2021.2023}\)
A = \(\dfrac{x}{2}\).(\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + .......+ \(\dfrac{2}{2021.2023}\))
A = \(\dfrac{x}{2}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) +......+ \(\dfrac{1}{2021}\) - \(\dfrac{1}{2023}\))
A = \(\dfrac{x}{2}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{2023}\))
A = \(\dfrac{x}{2}\). \(\dfrac{2022}{2023}\)
A = \(\dfrac{1011x}{2023}\)