Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
√(x2-6x+11) + √(x2-6x+13) + √(x2-4x+5) = 3+√2 (1)
Có: \(\sqrt{x^2-6x+11}=\sqrt{\left(x-3\right)^2+2}\ge\sqrt{2}\)
(Dấu = xảy ra khi x = 3)
\(\sqrt{x^2-6x+13}=\sqrt{\left(x-3\right)^2+4}\ge\sqrt{4}=2\)
(Dấu = xảy ra khi x = 3)
\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\)
(Dấu = xảy ra khi x = 2)
Nhận xét PT (1):
\(VT\ge3+\sqrt{2}\)
\(VP=3+\sqrt{2}\)
Nên: √(x2-6x+11) + √(x2-6x+13) + √(x2-4x+5) = 3+√2 khi: x = 3 và x = 2
=> PT vô nghiệm
Ta có:
\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\)
\(=x^2-6x+13-\left(x^2-6x+10\right)\)
\(=3\)
mà \(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}=1\)
=> \(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\)
Em chưa hiểu ở dòng thứ 3,chị có thể giải thích cho em với được ko ạ
x=\(\frac{1}{392}\)(729-28\(\sqrt{2}\)+\(\sqrt{1457-56\sqrt{2}}\)
(\(\sqrt{x^2-6x+13}\) - \(\sqrt{x^2-6x+10}\))(\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\)) = x2 - 6x + 13 - x2 + 6x - 10 = 3
=>
\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\) = 3
Sửa đề: \(x^{13}-6x^{12}+6x^{11}-6x^{10}+...-6x^2+6x-5\)
x=5 nên x+1=6
\(x^{13}-6x^{12}+6x^{11}-6x^{10}+...-6x^2+6x-5\)
\(=x^{13}-x^{12}\left(x+1\right)+x^{11}\left(x+1\right)-x^{10}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-x\)
\(=x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-x\)
=0