Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>(3/2-2x):2/3=1/6
=>3/2-2x=1/6x2/3=2/18=1/9
=>2x=25/18
hay x=25/36
b: \(\Leftrightarrow2x-2x+\dfrac{5}{2}-2=x-\dfrac{1}{4}\)
=>x-1/4=1/2
=>x=3/4
c: \(\Leftrightarrow2x-\dfrac{2}{3}-\dfrac{1}{3}x+\dfrac{1}{4}x=0\)
=>23/12x=2/3
=>x=8/23
A = 2⁵.(-5)² - 8² - 7
= 32.25 - 64 - 7
= 729
= 27²
B = 2³.(-4)² + (-3)².3² - 40
= 8.16 + 9.9 - 40
= 169
= 13²
C = (1/4 - 1/2 - 1)³ . (2 - 2/5)³
= (-5/4)³ . (8/5)³
= (-5/4 . 8/5)³
= (-2)³
D = (-1/4)² : (1/2 - 1/3)
= 1/16 : 1/6
= 3/8
E = 4 . (1/4)² + 25 . [(3/4)³ : (5/4)³] : (3/2)³
= 1/4 + 25 . (3/4 . 5/4)³ : (3/2)³
= 1/4 + 25 . (15/16)³ : 27/8
= 1/4 + 25 . 3375/4096 : 27/8
= 1/4 + 84375/4096 : 27/8
= 1/4 + 3125/512
= 3253/512
F = 2³ + 3.(1/2)⁰ - 1 + [(-2)² : 1/2] - 8
= 8 + 3.1 - 1 + (4 : 1/2) - 8
= 8 + 3 - 1 + 8 - 8
= 10
1) Ta có: \(\dfrac{1}{7}x^2y^3\cdot\left(-\dfrac{14}{3}xy^2\right)\cdot\left(-\dfrac{1}{2}xy\right)\left(x^2y^4\right)\)
\(=\left(-\dfrac{1}{7}\cdot\dfrac{14}{3}\cdot\dfrac{-1}{2}\right)\left(x^2y^3\cdot xy^2\cdot xy\cdot x^2y^4\right)\)
\(=\dfrac{1}{3}x^6y^{10}\)
2) Ta có: \(\left(3xy\right)^2\cdot\left(-\dfrac{1}{2}x^3y^2\right)\)
\(=9xy^2\cdot\dfrac{-1}{2}x^3y^2\)
\(=-\dfrac{9}{2}x^4y^4\)
3) Ta có: \(\left(-\dfrac{1}{4}x^2y\right)^2\cdot\left(\dfrac{2}{3}xy^4\right)^3\)
\(=\dfrac{1}{16}x^4y^2\cdot\dfrac{8}{27}x^3y^{12}\)
\(=\dfrac{1}{54}x^7y^{14}\)
`#040911`
a,
\(\dfrac{1}{2}\cdot\left(x-4\right)-\dfrac{1}{4}\cdot\left(x-\dfrac{4}{3}\right)=2\cdot\left(x-\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{1}{2}x-2-\dfrac{1}{4}x+\dfrac{1}{3}=2x-1\\\Rightarrow\left(\dfrac{1}{2}x-\dfrac{1}{4}x-2x\right)=2-\dfrac{1}{3}-1\\ \Rightarrow-\dfrac{7}{4}x=\dfrac{2}{3}\\ \Rightarrow x=\dfrac{2}{3}\div\left(-\dfrac{7}{4}\right)\\ \Rightarrow x=-\dfrac{8}{21}\)
Vậy, \(x=-\dfrac{8}{21}\)
b,
\(\dfrac{3}{4}-\left(x-\dfrac{1}{2}\right)^2=-\dfrac{11}{2}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{3}{4}-\left(-\dfrac{11}{2}\right)\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{25}{4}\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\left(\pm\dfrac{5}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{5}{2}\\x-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}+\dfrac{1}{2}\\x=-\dfrac{5}{2}+\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy, \(x\in\left\{-2;3\right\}\)
c,
\(\dfrac{3}{16}+1\dfrac{1}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\\ \Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\div\dfrac{17}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{17}\)
Bạn xem lại đề có sai kh nhỉ?
c) \(\dfrac{3}{16}+\dfrac{1}{\dfrac{1}{16}}\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)
\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\)
\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\)
\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}:16\)
\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{256}=\left(\dfrac{3}{16}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{2}{3}=\dfrac{3}{16}\\x-\dfrac{2}{3}=-\dfrac{3}{16}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{16}+\dfrac{2}{3}\\x=-\dfrac{3}{16}+\dfrac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{41}{48}\\x=\dfrac{23}{48}\end{matrix}\right.\)
1) \(\left|x+\frac{4}{5}\right|+\frac{7}{5}=\frac{3}{5}\)
\(\Rightarrow\left|x+\frac{4}{5}\right|=\frac{3}{5}-\frac{7}{5}\)
\(\Rightarrow\left|x+\frac{4}{5}\right|=\frac{-4}{5}\)
\(x+\frac{4}{5}=\pm\frac{4}{5}\)
\(TH1:x+\frac{4}{5}=\frac{4}{5}\)
\(\Rightarrow x=\frac{4}{5}-\frac{4}{5}=0\)
\(TH2:x+\frac{4}{5}=\frac{-4}{5}\)
\(\Rightarrow x=\frac{-4}{5}-\frac{4}{5}=\frac{-8}{5}\)
Vậy x ∈ {0; \(\frac{-8}{5}\)}
Nguyễn Trà My
Phần a)
\(3\times\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)
\(32-3x+13=76-x\)
\(116-3x=76-x\)
\(116-76=3x-x\)
\(46=2x\)
\(x=46\div2\)
\(x=13\)
1.
$(3^2-2^3)x+3^2.2^2=4^2.3$
$\Leftrightarrow x+36=48$
$\Leftrightarrow x=48-36=12$
2.
$x^5-x^3=0$
$\Leftrightarrow x^3(x^2-1)=0$
$\Leftrightarrow x^3(x-1)(x+1)=0$
$\Leftrightarrow x^3=0$ hoặc $x-1=0$ hoặc $x+1=0$
$\Leftrightarrow x=0$ hoặc $x=\pm 1$
3.
$(x-1)^2+(-3)^2=5^2(-1)^{100}$
$\Leftrightarrow (x-1)^2+9=25$
$\Leftrightarrow (x-1)^2=25-9=16=4^2=(-4)^2$
$\Rightarrow x-1=4$ hoặc $x-1=-4$
$\Leftrightarrow x=5$ hoặc $x=-3$
4.
$(2x-1)^2-(2x-1)=0$
$\Leftrightarrow (2x-1)(2x-1-1)=0$
$\Leftrightarrow (2x-1)(2x-2)=0$
$\Leftrightarrow 2x-1=0$ hoặc $2x-2=0$
$\Leftrightarrow x=\frac{1}{2}$ hoặc $x=1$
$\Lef
`@` `\text {Ans}`
`\downarrow`
\((3^2-2^3)x+3^2.2^2=4^2.3\)
`=> x + (3*2)^2 = 48`
`=> x+6^2 = 48`
`=> x + 36 = 48`
`=> x = 48 - 36`
`=> x=12`
Vậy, `x=12`
\(x^5-x^3=0\)
`=> x^3(x^2 - 1)=0`
`=>`\(\left[{}\begin{matrix}x^3=0\\x^2-1=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x^2=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)
Vậy, `x \in {0; +- 1 }`
\(\left(x-1\right)^2+\left(-3\right)^2=5^2\cdot\left(-1\right)^{100}\)
`=> (x-1)^2 + 9 = 25*1`
`=> (x-1)^2 + 9 = 25`
`=> (x-1)^2 = 25 - 9`
`=> (x-1)^2 = 16`
`=> (x-1)^2 = (+-4)^2`
`=>`\(\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4+1\\x=-4+1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy, `x \in {5; -3}`
\((2x-1)^2-(2x-1)=0\)
`=> (2x-1)(2x-1) - (2x-1)=0`
`=> (2x-1)(2x-1-1)=0`
`=>`\(\left[{}\begin{matrix}2x-1=0\\2x-2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=1\\2x=2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Vậy, `x \in {1; 1/2}`
a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1) = ({x^2} + 3{x^2}) + (2x - 5x) + (3 + 1) = 4{x^2} - 3x + 4\);
b) \(\begin{array}{l}(4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5) = 4{x^3} - 2{x^2} - 6 - {x^3} + 7{x^2} - x + 5\\ = (4{x^3} - {x^3}) + ( - 2{x^2} + 7{x^2}) - x + ( - 6 + 5) = 3{x^3} + 5{x^2} - x - 1\end{array}\);
c) \(\begin{array}{l} - 3{x^2}(6{x^2} - 8x + 1) = - 3{x^2}.6{x^2} - - 3{x^2}.8x + - 3{x^2}.1\\ = - 18{x^{2 + 2}} + 24{x^{2 + 1}} - 3{x^2} = - 18{x^4} + 24{x^3} - 3{x^2}\end{array}\);
d) \(\begin{array}{l}(4{x^2} + 2x + 1)(2x - 1) = (4{x^2} + 2x + 1).2x - (4{x^2} + 2x + 1).1 = 4{x^2}.2x + 2x.2x + 1.2x - 4{x^2} - 2x - 1\\ = 8{x^{2 + 1}} + 4{x^{1 + 1}} + 2x - 4{x^2} - 2x - 1 = 8{x^3} + 4{x^2} + 2x - 4{x^2} - 2x - 1 = 8{x^3} - 1\end{array}\);
e) \(\begin{array}{l}({x^6} - 2{x^4} + {x^2}):( - 2{x^2}) = {x^6}:( - 2{x^2}) - 2{x^4}:( - 2{x^2}) + {x^2}:( - 2{x^2})\\ = - \dfrac{1}{2}{x^{6 - 2}} + {x^{4 - 2}} - \dfrac{1}{2}{x^{2 - 2}} = - \dfrac{1}{2}{x^4} + {x^2} - \dfrac{1}{2}.\end{array}\);
g)
\(({x^5} - {x^4} - 2{x^3}):({x^2} + x)=x^3-2x^2\)