Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(x\left(x+2\right)\left(x+3\right)\left(x+5\right)=280\)
\(\Leftrightarrow x\left(x+5\right)\left(x+2\right)\left(x+3\right)=280\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+6\right)=280\)
Đặt \(x^2+5x+3=t\)
\(\Rightarrow\left(t-3\right)\left(t+3\right)=280\)
\(\Leftrightarrow t^2-9=280\)
\(\Leftrightarrow t^2=289\Leftrightarrow\left[{}\begin{matrix}t=17\\t=-17\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+3=17\\x^2+5x+3=-17\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x-14=0\\x^2+5x+20=0\end{matrix}\right.\)
\(\Leftrightarrow x^2+5x-14=0\text{(vì }x^2+5x+20=\left(x+\dfrac{5}{2}\right)^2+\dfrac{55}{4}>0\forall x\text{)}\)
\(\Leftrightarrow x^2-2x+7x-14=0\)
\(\Leftrightarrow x\left(x-2\right)+7\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\)
\(\Leftrightarrow\) x - 2 = 0 hoặc x + 7 = 0
\(\Leftrightarrow\) x = 2 hoặc x = - 7
Vậy x = 2 hoặc x = -7.
3. \(\left(x+3\right)\left(x+4\right)\left(x+5\right)=x\)
\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\left(x+5\right)-x=0\)
\(\Leftrightarrow x^3+12x^2+47x+60-x=0\)
\(\Leftrightarrow x^3+12x^2+46x+60=0\)
\(\Leftrightarrow x^3+6x^2+6x^2+36x+10x+60=0\)
\(\Leftrightarrow x^2\left(x+6\right)+6x\left(x+6\right)+10\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x^2+6x+10\right)=0\)
\(\Leftrightarrow x+6=0\text{(vì }x^2+6x+10=\left(x+3\right)^2+1>0\forall x\text{)}\)
\(\Leftrightarrow x=-6\)
Vậy x = -6.
a) \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)=24\)
\(\Leftrightarrow x^2\left(x+5\right)^2-2x\left(x+5\right)=24\)
\(\Leftrightarrow x^2\left(x+5\right)^2-2x\left(x+5\right)=24\)
\(\Leftrightarrow x^4+10x^2+25x^2-2x^2-10x=24\)
\(\Leftrightarrow x^4+10x^3+23x^2-10x=24\)
\(\Leftrightarrow x^4+10x^3+23x^2-10x-24=0\)
\(\Leftrightarrow\left(x^3+11x^2+34x+24\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+10x+24\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+6\right)\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x+4=0\text{ hoặc }x+6=0\text{ hoặc }x-1=0\text{ hoặc }x+1=0\)
\(\Leftrightarrow x=-4\text{ hoặc }x=-6\text{ hoặc }x=\pm1\)
Vậy: nghiệm của phương trình là: x = -4; -6; +-1
b) \(\left(x^3+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow x^5+x^4+2x^3+x^3+x^2+2x+x^2+x+2=12\)
\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x+2=12\)
\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x+2-12=0\)
\(\Leftrightarrow x^5+x^4+3x^3+2x^2+3x-10=0\)
\(\Leftrightarrow\left(x^4+2x^3+5x^2+7x+10\right)\left(x-1\right)=0\)
vì: \(x^4+2x^3+5x^2+7x+10\ne0\) nên:
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy: nghiệm của phương trình là: x = 1
d: \(\dfrac{x^4-2x^3+2x-1}{x^2-1}\)
\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)
\(=x^2-2x+1\)
\(=\left(x-1\right)^2\)
Bài 2
Ta có :
\(x^2+5x+6=\left(x+2\right)\left(x+3\right)\)
\(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)
\(x^2+9x+20=\left(x+4\right)\left(x+5\right)\)
Khi đó:
\(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}=\dfrac{3}{40}\)
=> \(\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}=\dfrac{3}{40}\)
=> \(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{3}{40}\)
=> \(\dfrac{1}{x+2}-\dfrac{1}{x+5}=\dfrac{3}{40}\)
Giải phương trình ta được x = 3