K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

x sẽ bằng 1

2 tháng 10 2016

giải thích giùm mk

8 tháng 8 2019

Đăng ít một thôi bạn :v

a) 3x - (3 - 2x) = 0

3x - 3 + 2x = 0

5x - 3 = 0

5x = 0 + 3

5x = 3

x = 3/5

b) (x + 2).3 - 4x.3 = 0

3.(x + 2) - 12.x = 0

3[x + 2 - (4x)] = 0

x + 2 - 4 = 0

-3x + 2 = 0

-3x = 0 - 2

-3x = -2

x = 2/3

c) (x - 2)(x - 4)(1 - 7x) = 0

x - 2 = 0 hoặc x - 4 = 0 hoặc 1 - 7x = 0

x = 0 + 2         x = 0 + 4          -7x = 0 - 1

x = 2               x = 4                 -7x = -1

                                                 x = 1/7

d) 4x2 - 1/4 = 0

4x2 = 0 + 1/4

4x2 = 1/4

x2 = 1/4 : 4

x2 = 1/16

x2 = (1/4)2

x = 1/4 hoặc x = -1/4

e) -3x2 + 48 = 0

3x2 - 48 = 0

3x2 = 0 + 48 

3x2 = 48

x2 = 48 : 3

x2 = 16

x2 = 42

x = 4 hoặc x = -4

g) 3(1/2 - 1/3x)3 - 1/9 = 0

3(1/2 - x/3)3 - 1/9 = 0

3(1/2 - x/3)3 = 0 + 1/9

3(1/2 - x/3)3 = 1/9

(1/2 - x/3)3 = 1/9 : 3

(1/2 - x/3)3 = 1/27

(1/2 - x/3)= (1/3)3

1/2 - x/3 = 1/3

-x/3 = 1/3 - 1/2

-x/3 = -1/6

-x = -1/6.3

-x = -3/6 = -1/2

x = -1/2

m) 4x3 + 5x4 = 0

x3(4 + 5x) = 0

x = 0 hoặc 4 + 5x = 0

x = 0          5x = 0 - 4

                  5x = -4

                  x = -4/5

h) -x3 + 1/64x = 0

-x3 + x/64 = 0

x/64 - x3 = 0

x(1/64 - x3) = 0

x = 0 hoặc 1/64 - x2 = 0

x = 0           -x2 = 0 - 1/64

                   -x2 = -1/64

                    x2 = 1/64 = -+1/8

k) (x2 + 1)2 + 3x(x2 + 1) + 2 = 0

x4 + 2x2 + 1 + 3x3 + 3x + 2 = 0

x4 + 2x2 + 3 + 3x3 + 3x = 0

(x3 + 2x2 + 3)(x + 1) = 0

Mà x3 + 2x2 + 3 # 0 nên

x + 1 = 0

x = -1

8 tháng 8 2019

c) \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)\)

Cho \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)=0\)

\(\left[{}\begin{matrix}x-2=0\\x-4=0\\1-7x=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=0+2\\x=0+4\\7x=1-0=1\end{matrix}\right.\)\(\left[{}\begin{matrix}x=2\\x=4\\x=1:7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=2\\x=4\\x=\frac{1}{7}\end{matrix}\right.\)

Vậy \(x=2;x=4\)\(x=\frac{1}{7}\) đều là nghiệm của đa thức \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)\)

d) \(4x^2-\frac{1}{4}\)

Cho \(4x^2-\frac{1}{4}=0\)

\(4x^2=0+\frac{1}{4}\)

\(4x^2=\frac{1}{4}\)

\(x^2=\frac{1}{4}:4\)

\(x^2=\frac{1}{16}\)

=> \(\left[{}\begin{matrix}x=\frac{1}{4}\\x=-\frac{1}{4}\end{matrix}\right.\)

Vậy \(x=\frac{1}{4}\)\(x=-\frac{1}{4}\) đều là nghiệm của đa thức \(4x^2-\frac{1}{4}.\)

e) \(-3x^2+48\)

Cho \(-3x^2+48=0\)

\(-3x^2=0-48\)

\(-3x^2=-48\)

\(x^2=\left(-48\right):\left(-3\right)\)

\(x^2=16\)

=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

Vậy \(x=4\)\(x=-4\) đều là nghiệm của đa thức \(-3x^2+48.\)

Mình chỉ làm 3 câu thôi nhé.

Chúc bạn học tốt!

3 tháng 12 2023

a)

\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)

=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)

b)

\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)

=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)

c)

Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)

=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)

d)

Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)

=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)

20 tháng 12 2018

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

20 tháng 12 2018

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

24 tháng 7 2019

\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)

\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)

24 tháng 7 2019

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)

áp dụng tính chất dãy tỉ số bằng nhau  ta có

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)

1 tháng 1 2017

b) Giải:
Ta có: \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) và x + y + z = 180

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{180}{6}=30\)

+) \(\frac{x}{1}=30\Rightarrow x=30\)

+) \(\frac{y}{2}=30\Rightarrow y=60\)

+) \(\frac{z}{3}=30\Rightarrow z=90\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(30;60;90\right)\)

c) Sai đề

1 tháng 1 2017

A) x/2=y/3=z/4 và 180 - 2x -y-z=0

ta có :

180-2x-y-z=0

=> 2x-y-z=180

Theo bài ra ta có :

x/2=y/3=z/4

=> 2x/4=y/3=z/4

Áp dụng t/c của dãy tỷ số bằng nhau ta có :

2x/4=y/3=z/4=2x-y-z/4-3-4=180/-3=-60

=> 2x=-240 => x= -120

y=-180

z=-240

các câu còn lại tự làm đc mà k đc hỏi mk

24 tháng 7 2019

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

3 tháng 8 2023

a) \(\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)

c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)

\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)

\(\Rightarrow x\left(6x-2-15-6x\right)\)

\(\Rightarrow-16x=0\)

\(\Rightarrow x=0\)

d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)

\(\Rightarrow9x^2-4-4x+4=0\)

\(\Rightarrow9x^2-4x=0\)

\(\Rightarrow x\left(9x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)

3 tháng 8 2023

\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)