K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

Vì \(\left(x+1\right)^2\ge0\)\(\forall x\)

     \(\left(\frac{3}{4}-y\right)^2\ge0\)\(\forall y\)

\(\Rightarrow\left(x+1\right)^2+\left(\frac{3}{4}-y\right)^2\ge0\)\(\forall x,y\)

mà \(\left(x+1\right)^2+\left(\frac{3}{4}-y\right)^2=0\left(gt\right)\)

\(\Rightarrow\)Dấu " = " chỉ xảy ra khi : \(\left(x+1\right)^2=0\)và \(\left(\frac{3}{4}-y\right)^2=0\)

\(\Rightarrow x+1=0\)và \(\frac{3}{4}-y=0\)\(\Rightarrow x=-1\)và \(y=\frac{3}{4}\)

Vậy \(x=-1\)và \(y=\frac{3}{4}\)

27 tháng 9 2018

lam sao bạn viết chữ to như 3/4 . ( x + 1/2 ) vậy

1 tháng 9 2019

Đáp án đúng nhưng cách làm này là sai

1 tháng 9 2019

bày em cách làm với được không ạ? em tự suy ra chứ thầy cô chưa bày j cả nên là em cx chưa hiểu cho lắm mong anh giúp đỡ ạ

17 tháng 7 2018

\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|=0\) \(0\)

<=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)

\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)

<=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=\frac{-7}{20}\end{cases}}\)

\(\left|x-\frac{2}{3}\right|+\left|x+y+\frac{3}{4}\right|+\left|y-z-\frac{5}{6}\right|=0\)

<=> \(\hept{\begin{cases}x-\frac{2}{3}=0\\x+y+\frac{3}{4}=0\\y-z-\frac{5}{6}=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-17}{12}\\z=\frac{-9}{4}\end{cases}}\)

\(\left|x-\frac{1}{2}\right|+\left|xy-\frac{3}{4}\right|+\left|2x-3y-z\right|=0\)

<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\xy-\frac{3}{4}=0\\2x-3y-z=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\\z=\frac{-7}{2}\end{cases}}\)

các câu còn lại tương tự

17 tháng 8 2020

a. Vì \(\left|x+\frac{1}{2}\right|\ge0\forall x;\left|y-\frac{3}{4}\right|\ge0\forall y;\left|z-1\right|\ge0\forall z\)

\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> | x + 1/2 | = 0 ; | y - 3/4 | = 0 ; | z - 1 | = 0

<=> x = - 1/2 ; y = 3/4 ; z = 1

b. Vì \(\left|x-\frac{3}{4}\right|\ge0\forall x;\left|\frac{2}{5}-y\right|\ge0\forall y\left|x-y+z\right|\ge0\forall x;y;z\)

\(\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> | x - 3/4 | = 0 ; | 2/5 - y | = 0 ; | x - y + z | = 0

<=> x = 3/4 ; y = 2/5 ; z = - 7/20

17 tháng 8 2020

a) Ta có \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\forall x\\\left|y-\frac{3}{4}\right|\ge0\forall y\\\left|z-1\right|\ge0\forall z\end{cases}}\Rightarrow\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)

Vậy x = -1/2 = y = 3/4 ; z = 1 

b) Ta có : \(\hept{\begin{cases}\left|x-\frac{3}{4}\right|\ge0\forall x\\\left|\frac{2}{5}-y\right|\ge0\forall y\\\left|x-y+z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=-\frac{7}{20}\end{cases}}\)

Vậy x = 3/4 ; y = 2/5 ; z = -7/20

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

12 tháng 10 2019

Bài 1 :

a/ \(x^2-7x+6=0\)

\(\Leftrightarrow x^2-6x-x+6=0\)

\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

Vậy....

b/ \(x^2-10x+9=0\)

\(\Leftrightarrow x^2-9x-x+9=0\)

\(\Leftrightarrow x\left(x-9\right)-\left(x-9\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-9=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=1\end{matrix}\right.\)

Vậy...

c/ \(x^2+9x+8=0\)

\(\Leftrightarrow x^2+8x+x+8=0\)

\(\Leftrightarrow\left(x+8\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=-1\end{matrix}\right.\)

Vậy ...

d/ \(x^2-11x+10=0\)

\(\Leftrightarrow x^2-11x+10=0\)

\(\Leftrightarrow x^2-x-10x+10=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=10\end{matrix}\right.\)

Vậy...

12 tháng 10 2019

Bài 2 :

Ta có :

\(\frac{2x-y}{x+y}=\frac{2}{3}\)

\(\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)

\(\Leftrightarrow6x-3y=2x+2y\)

\(\Leftrightarrow6x-2x=2y+3y\)

\(\Leftrightarrow4x=5y\)

\(\Leftrightarrow\frac{x}{y}=\frac{5}{4}\)

Vậy....

Bài 3 : không hiểu đề lắm ???!!!!

Bài 4 :

Ta có :

\(\frac{x}{y^2}=2\Leftrightarrow x=2y^2\left(1\right)\)

Thay (1) ta có :

\(\frac{x}{y}=16\)

\(\Leftrightarrow\frac{2y^2}{y}=16\)

\(\Leftrightarrow2y=16\)

\(\Leftrightarrow y=8\Leftrightarrow x=128\)

Vậy...

21 tháng 6 2019

a) Ta có: \(\left(x-1\right)^2\ge\)\(\forall\)x

            \(\left|y+2\right|\ge0\)\(\forall\) y

=> \(\left(x-1\right)^2+\left|y+2\right|\ge0\)\(\forall\)x,y

=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\y+2=0\end{cases}}\)

=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy ...

b) Ta có: \(\frac{1}{2}-\frac{y}{3}=\frac{2}{x}\)

=> \(\frac{3-2y}{6}=\frac{2}{x}\)

=> \(x\left(3-2y\right)=12\)

=> x; 3 - 2y \(\in\)Ư(12) = {1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 12; -12}

Do 3 - 2y là số lẽ , mà x,y \(\in\)Z

=> 3 - 2y \(\in\) {1; -1; 3; -3} 

Lập bảng :

3 - 2y1 -1 3 -3
   x 12 -12 4 -4
   y 1  2  0 3

Vậy ...

23 tháng 8 2021

Ta có : \(\left(3x-\frac{y}{5}\right)^2\ge0;\left(2y+\frac{3}{7}\right)^2\ge0\)

\(=>\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2\ge0\)

Mà \(\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2=0\)nên dấu "=" xảy ra 

\(< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\2y+\frac{3}{7}=0\end{cases}}< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\y=-\frac{3}{14}\end{cases}}\)

\(< =>\hept{\begin{cases}x=-\frac{1}{70}\\y=-\frac{3}{14}\end{cases}}\)

23 tháng 8 2021

Ta có : \(\left(x+y-\frac{1}{4}\right)^2\ge0;\left(x-y+\frac{1}{5}\right)^2\ge0\)

Cộng theo vế ta được : \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2\ge0\)

Mà \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2=0\)nên dấu "=" xảy ra 

\(< =>\hept{\begin{cases}y+x=\frac{1}{4}\\y-x=\frac{1}{5}\end{cases}}< =>\hept{\begin{cases}y=\frac{9}{40}\\x=\frac{1}{40}\end{cases}}\)