K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{12}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{10}{3}}=\dfrac{x-y-z}{12-\dfrac{5}{2}-\dfrac{10}{3}}=\dfrac{74}{\dfrac{37}{6}}=12\)

Do đó: x=144; y=30; z=40

\(\dfrac{x}{12}=\dfrac{2y}{5}=\dfrac{3z}{10}\)

\(\Leftrightarrow\dfrac{x}{72}=\dfrac{2y}{30}=\dfrac{3z}{60}\)

\(\Leftrightarrow\dfrac{x}{72}=\dfrac{y}{15}=\dfrac{z}{20}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{72}=\dfrac{y}{15}=\dfrac{z}{20}=\dfrac{x-y-z}{72-15-20}=\dfrac{74}{37}=2\)

Do đó: x=144; y=30; z=60

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{12}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{10}{3}}=\dfrac{x-y-z}{12-\dfrac{5}{2}-\dfrac{10}{3}}=\dfrac{74}{\dfrac{37}{6}}=12\)

Do đó: x=144; y=30; z=40

29 tháng 1 2016

x:y:z=5:4:3

=>x/5=y/4=z/3

theo t/c dãy tỉ số= nhau:

\(\frac{x+2y-3z}{5+2.4-3.3}=\frac{x-2y+3z}{5-2.4+3.3}\Rightarrow\frac{x+2y-3z}{4}=\frac{x-2y+3z}{6}\Rightarrow\frac{x+2y-3z}{x-2y+3z}=\frac{4}{6}=\frac{2}{3}\)

=>P+1/3=2/3+1/3=3/3=1

vậy P=1

5 tháng 10 2018

Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^

Có gì không hiểu bạn ib nha ^^

1. \(2x=3y-2x\left(1\right)\)\(x+y=14\)

\(\left(1\right)\Leftrightarrow4x=3y\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)

Theo tính chất dãy tỉ số bằng nhau, có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)

Bạn tự kết luận ^^

5 tháng 10 2018

sao nhieu bt the ban

4 tháng 12 2019

Câu 5:

Theo đề bài, ta có x ; y ; z tỉ lệ với 5 ; 4 ; 3.

\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}.\)

\(\Rightarrow\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}=\frac{x+2y-3z}{5+8-9}=\frac{x+2y-3z}{4}\) (1).

\(\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}=\frac{x-2y+3z}{5-8+9}=\frac{x-2y+3z}{6}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{x+2y-3z}{4}=\frac{x-2y+3z}{6}.\)

Ta có: \(P=\frac{x+2y-3z}{x-2y+3z}\)

\(\Rightarrow P=\frac{4}{6}\)

\(\Rightarrow P=\frac{2}{3}.\)

Vậy \(P=\frac{2}{3}.\)

Chúc bạn học tốt!