Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+\sqrt{x}-6}{x-9}+\frac{x-7\sqrt{x}+19}{x+\sqrt{x}-12}-\frac{x-5\sqrt{x}}{x+4\sqrt{x}}\)
\(=\frac{x+3\sqrt{x}-2\sqrt{x}-6}{x-9}+\frac{x-7\sqrt{x}+19}{x+4\sqrt{x}-3\sqrt{x}-12}-\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\sqrt{x}\left(\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)}{x-9}+\frac{x-7\sqrt{x}+19}{\sqrt{x}\left(\sqrt{x}+4\right)-3\left(\sqrt{x}+4\right)}-\frac{\sqrt{x}-5}{\sqrt{x}+4}\)
\(=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{x-7\sqrt{x}+19}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}+\frac{x-7\sqrt{x}+19}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}-\frac{x-8\sqrt{x}+15}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x+2\sqrt{x}-8+x-7\sqrt{x}+19-x+8\sqrt{x}-15}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x+3\sqrt{x}-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x+4\sqrt{x}-\sqrt{x}-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+4\right)-\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}-3}\)
c) x - 6\(\sqrt{x}\)+ 9 = \(\left(\sqrt{x}\right)^2\)- 2.\(\sqrt{x}\).3 + 9 = \(\left(\sqrt{x}-3\right)^2\)
d) Tương tự.
a,b) Không hiểu
\(a,x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(b,x-5=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)
\(c,x-6\sqrt{x}+9=\left(\sqrt{x}-3\right)^2\)
\(d,x-4\sqrt{x}+4=\left(\sqrt{x}-2\right)^2\)
T có hệ điều kiện:
\(\hept{\begin{cases}\left(x-1\right)\left(x+1\right)\ge0\left(1\right)\\\left(x-1\right)\left(9-x\right)\ge0\left(2\right)\\\left(x-1\right)\left(2x-12\right)\ge0\left(3\right)\end{cases}}\)
Sử dụng xét dấu trong trái ngoài cùng, ta có:
\(\left(1\right)\Leftrightarrow x\le-1\) hoặc \(x\ge1\)
\(\left(2\right)\Leftrightarrow1\le x\le9\)
\(\left(3\right)\Leftrightarrow x\le1\) hoặc \(x\ge6\)
Biểu diễn nghiệm trên trục như sau:
(1): 1 -1 ] [
(2): 1 ] [ [ 9
(3): ] 1 6 ] [
Kết hợp cả ba ta có:
-1 1 ] [ ] 9 [ 6 ]
Vậy điều kiện cuối là \(6\le x\le9\)
Cô giải chi tiết đó :)) Chúc em học tốt :)
Bài làm :
1) Khi x=9 ; giá trị của A là :
\(A=\frac{\sqrt{9}}{\sqrt{9}+2}=\frac{3}{3+2}=\frac{3}{5}\)
2) Ta có :
\(B=...\)
\(=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1.\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\)
\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
3) Ta có :
\(\frac{A}{B}=\frac{\sqrt{x}}{\sqrt{x}+2}\div\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\sqrt{x}}=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}=1-\frac{4}{\sqrt{x}+2}\)
Xét :
\(\frac{A}{B}+1=\frac{4}{\sqrt{x+2}}>0\Rightarrow\frac{A}{B}>-1\)
=> Điều phải chứng minh
1, thay x=9(TMĐKXĐ) vào A ta đk:
A=\(\dfrac{\sqrt{9}}{\sqrt{9}-2}=3\)
vậy khi x=9 thì A =3
2,với x>0,x≠4 ta đk:
B=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
vậy B=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
3,\(\dfrac{A}{B}>-1\) (x>0,x≠4)
⇒\(\dfrac{\sqrt{x}}{\sqrt{x}+2}:\dfrac{\sqrt{x}}{\sqrt{x}-2}>-1\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}+2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}>-1\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+2}>-1\)
⇒\(\sqrt{x}-2>-1\) (vì \(\sqrt{x}+2>0\))
⇔\(\sqrt{x}>1\)⇔x=1 (TM)
vậy x=1 thì \(\dfrac{A}{B}>-1\) với x>0 và x≠4
\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(\Rightarrow\sqrt{x}+3\)
\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)
\(\Rightarrow\sqrt{y}-1\)
\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)
\(\Rightarrow\sqrt{xy}\)
\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)
\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)
\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)
\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)
Đặt \(\hept{\begin{cases}a=x-1\\b=y-1\\c=z-1\end{cases}}\)\(-1\le a,b,c\le1\) và \(a+b+c=0\)
\(T=(a+1)^4+(b+1)^4+(c+1)^4-12abc\)
\(=a^4+b^4+c^4+4(a^3+b^3+c^3)+6(a^2+b^2+c^2)+4(a+b+c)+3-12abc\)
Từ \(a+b+c=0\Rightarrow a^3+b^3+c^3=0\). Do đó:
\(T=a^4+b^4+c^4+6(a^2+b^2+c^2)+3\ge3\)
Xảy ra khi \(a=1;b=-1;c=0\)
Bài 2. Áp dụng BĐT Cauchy dưới dạng Engel , ta có :
\(\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}\) ≥ \(\dfrac{\left(1+4+9\right)^2}{x+y+z}=196\)
⇒ \(P_{MIN}=196."="\) ⇔ \(x=y=z=\dfrac{1}{3}\)
\(x^{12}-x^9+x^4-x+1>0\)\(\Leftrightarrow2x^{12}-2x^9+2x^4-2x+2>0\)
\(\Leftrightarrow\left(x^{12}-2x^9+x^6\right)+\left(x^{12}-x^6+\frac{1}{4}\right)+\left(2x^4-2x^2+\frac{1}{2}\right)+\)\(\left(2x^2-2x+\frac{1}{2}\right)+\frac{3}{4}>0\)
\(\Leftrightarrow\left(x^6-x^3\right)^2+\left(x^6-\frac{1}{2}\right)^2+2\left(x^2-\frac{1}{2}\right)^2+2\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
do đó ta có đpcm
\(D=x^{10}-x^9+x^4-x+1>0\)
\(D=x^9\left(x-1\right)+x\left(x^3-1\right)+1\)
Vậy ta xét : \(x\ge1\)\(\Rightarrow\)D Sẽ luôn dương (1)
Xét: \(x< 1\)
\(\Rightarrow\)\(D=x^{10}+x^4\left(1-x^5\right)+\left(1-x\right)\)