Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+6x^2+11x+6=x^3+x^2+5x^2+5x+6x+6\)
\(=x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x+1\right)\left(x\left(x+2\right)+3\left(x+2\right)\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
\(\frac{x-1}{2}\cdot\frac{x+1}{2}\cdot(4x-1)\)
\(=\frac{\left(x-1\right)\left(x+1\right)\left(4x-1\right)}{2\cdot2}\)
\(=\frac{(x^2-1)\left(4x-1\right)}{4}\)
\(=\frac{4x^3-x^2-4x+1}{4}\)
Bn tham khảo nhé:
f(x) =x^4-x^3-3x^2+ax+b
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó:
f(x) =(x+1)(x-2).g(x) +2x-3
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1
Ta có: \(x^2+x-6=\left(x-2\right)\left(x+3\right)\)
Đặt \(A\left(x\right)=x^3+ax^2-bx+12\)
Để A(x) chia hết cho \(x^2+x-6\) thì mọi nghiệm của \(x^2+x-6\) đều là nghiệm của A(x)
=> x = 2 và x = -3 là 2 nghiệm của A(x)
Ta có: \(\hept{\begin{cases}A\left(2\right)=2^3+4a-2b+12=0\\A\left(-3\right)=\left(-3\right)^3+\left(-3\right)^2a-\left(-3\right)b+12=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4a-2b=-20\\9a+3b=15\end{cases}}\Leftrightarrow\hept{\begin{cases}2a-b=-10\\3a+b=5\end{cases}}\)
\(\Rightarrow2a-b+3a+b=-10+5\)
\(\Leftrightarrow5a=-5\Rightarrow a=-1\Rightarrow b=8\)
Vậy a = -1 ; b = 8
\(\dfrac{x^{12}}{-x^6}=\dfrac{x^{12}}{x^6}\)
\(=\dfrac{x^6.x^6}{x^6}\)
\(=x^6\)
\(\dfrac{x^{12}}{\left(-x\right)^6}=\dfrac{x^{12}}{x^6}=x^{12-6}=x^6\)
Mk viết (-x)6 = x6 Vì đây là lũy thừa bậc chẵn