K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2023

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(\dfrac{7}{2}\right)^2-2.3\)

\(=\dfrac{25}{4}\)

x1^2+x2^2=(x1+x2)^2-2x1x2

=49/4-2*3=49/4-6

=25/4

23 tháng 2 2023

22 tháng 8 2019

a) Với m= 2, ta có phương trình:  x 2 + 2 x − 3 = 0

Ta có:  a + b + c = 1 + 2 − 3 = 0                                                             

Theo định lý Viet, phương trình có 2 nghiệm: 

x 1 = 1 ;   x 2 = − 3 ⇒ S = 1 ;   − 3 .                                                                             

b) Chứng minh rằng phương trình luôn có nghiệm  ∀ m .

Ta có:  Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ;    ∀ m                                           

Vậy phương trình luôn có nghiệm  ∀ m .                                              

c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m                                                             

Ta có:

x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0                  

Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ;   m 2 = 3 2                                                  

Vậy m= -1 hoặc m= 3/2 

Δ=(-2)^2-4(-2m+1)

=4+8m-4=8m

Để phương trình có nghiệm thì 8m>=0

=>m>=0

\(x_2^2\left(x_1^2-1\right)+x_1^2\left(x_2^2-1\right)=8\)

=>\(2\cdot\left(x_1\cdot x_2\right)^2-x_2^2-x_1^2=8\)

=>\(2\cdot\left(-2m+1\right)^2-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=8\)

=>\(2\left(2m-1\right)^2-\left[2^2-2\left(-2m+1\right)\right]=8\)

=>\(8m^2-8m+2-4+2\left(-2m+1\right)=8\)

=>\(8m^2-8m-2-4m+2-8=0\)

=>8m^2-12m-8=0

=>m=2 hoặc m=-1/2(loại)

x1+x2=3; x1*x2=-7

B=(x1+x2)^2-2x1x2

=9-2*(-7)=23

D=(x1+x2)^3-3x1x2(x1+x2)

=3^3-3*(-7)*3

=27+63=90

F=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=10*(-7)+69

=-1

\(C=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{3^2-4\cdot\left(-7\right)}=\sqrt{37}\)

1 tháng 5 2023

mong bạn có thể giải thích chi tiết hơn

25 tháng 4 2022

xét delta phẩy có

1+1-m = 2-m vậy điều kiện để phương trình có 2 nghiệm x1;x2 là m ≤2 

theo Vi-ét ta có:

\(\left\{{}\begin{matrix}x1+x2=2\\x1x2=m-1\end{matrix}\right.\)

theo bài ra ta có: 

2x1 + x2 = 5 

x1 + 2 = 5 => x1 = 3 => x2 = -1 

ta có x1x2 = m - 1 => m - 1 = -3 

=> m = -2 vậy m = -2 để phương trình có 2 nghiệm x1;x2 thỏa mãn 2x1 + x2 = 5.

Δ=(-2)^2-4(m-3)

=4-4m+12=-4m+16

Để pt có hai nghiệm thì -4m+16>=0

=>-4m>=-16

=>m<=4

x1^2+x2^2-x1x2<7

=>(x1+x2)^2-3x1x2<7

=>2^2-3(m-3)<7

=>4-3m+9<7

=>-3m+13<7

=>-3m<-6

=>m>2

=>2<m<=4

1 tháng 7 2019

b) Theo định lí Vi-et ta có:

12 tháng 6 2018

c) Theo định lí Vi-et ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

P = x 1 2 + x 2 2  = (x1 + x2 )2 - 2 x 1 x 2  = 4 m + 3 2  - 2( m 2  + 3)

= 4( m 2  + 6m + 9) - 2( m 2  + 3) = 2 m 2  + 24m + 30